Toggle navigation
Egison
Documentations
Try It Out
Online Tools
Online Egison Interpreter
Online Egison Tutorial
Online Demonstrations
Poker Hands
Mahjong
Prime Numbers
Trees
Graph (Bellman-Ford Algorithm)
Randomized 3-SAT
Time-Series Data
Math
Blog
Community
Yang-Mills Equation of `U(1)` Gauge Theory
Nov 2 2017
-- -- This file has been auto-generated by egison-translator. -- def N := 4 def g := [|[|-1, 0, 0, 0|], [|0, 1, 0, 0|], [|0, 0, 1, 0|], [|0, 0, 0, 1|]|] def d X := WedgeApplyExpr (ApplyExpr (VarExpr "flip") [VarExpr "\8706/\8706"]) [VectorExpr [VarExpr "t",VarExpr "x",VarExpr "y",VarExpr "z"],VarExpr "X"] def hodge A := let k := dfOrder A in withSymbols [i, j] sqrt (abs (M.det g_#_#)) * foldl (.) ((ε' N k)_(i_1)..._(i_N) . A..._(j_1)..._(j_k)) (map 1#g~(i_%1)~(j_%1) (between 1 k)) def δ A := let r := dfOrder A in (-1) ^ (N * r + 1) * hodge (d (hodge A)) def Δ A := match dfrOrder A as integer with | #0 -> δ (d A) | #4 -> d (δ A) | _ -> d (δ A) + δ (d A) def normalize2 A := withSymbols [t1, t2] A_t1_t2 - A_t2_t1 hodge (wedge [|1, 0, 0, 0|] [|0, 1, 0, 0|]) hodge (wedge [|0, 0, 1, 0|] [|0, 0, 0, 1|]) dfNormalize (d [|φ t x y z, Ax t x y z, Ay t x y z, Az t x y z|]) def F := [|[|0, Ex t x y z, Ey t x y z, Ez t x y z|] , [|- Ex t x y z, 0, Bz t x y z, - By t x y z|] , [|- Ey t x y z, - Bz t x y z, 0, Bx t x y z|] , [|- Ez t x y z, By t x y z, - Bx t x y z, 0|]|] hodge (d F) δ F
Links
Back to the Table of Contents
This website in other langauge:
English
,
日本語