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ABSTRACT

A new programming language that widens the range of algorithms that we can con-
cisely describe is important not only because it makes programming of the existing prob-
lems easy but also because it widens the scope of computer science by enabling us to
deal with problems that we have avoided because programming has been difficult. In this
thesis, we propose the Egison programming language with two independent new features:
(i) a pattern-match facility for non-free data types; (ii) a facility for describing tensor
calculus in differential geometry in a form similar to mathematical formulae using index
notation.

Pattern matching of Egison features user-customizable non-linear pattern matching
with backtracking. Several non-standard pattern constructs derive from this pattern-
match facility: loop patterns and indexed pattern variables for representing the repeti-
tions in a pattern; sequential patterns for controlling the order of pattern matching. In
the first half of the thesis, we discuss the design and implementation of this pattern-
match facility, classify programming techniques utilizing this pattern-match facility, and
advocates a new paradigm, called pattern-match-oriented programming. Then, we show
three applications of Egison pattern matching. First, we reimplement the basic list pro-
cessing functions such as delete, concat, and unique and a SAT solver. We can simplify
their implementations by confining explicit recursions for backtracking inside an intu-
itive pattern. Second, we show that Egison pattern matching provides a unified query
language that can be used for various kinds of databases. Egison pattern matching al-
lows us to describe non-linear patterns for a set, tree, and graph that are executable
with a backtracking algorithm. Third, we show that Egison pattern matching makes the
implementation of a computer algebra system easy because it makes the implementa-
tion of a pattern-match engine for mathematical expressions compact. Egison pattern
matching has two implementations: an interpreter in Haskell and a library implemented
using Haskell meta-programming. This Haskell library converts Egison pattern matching
to a Haskell program that uses a backtracking monad. We can execute Egison pattern
matching as fast as Haskell because we convert Egison pattern matching to an equivalent
Haskell program. A computer algebra system is implemented in the Egison interpreter
using this Haskell library.

Tensor index notation that makes descriptions of tensor calculus in differential geom-
etry is implemented in this computer algebra system. In the second half of the thesis,
we propose a method for importing tensor index notation into programming. First, we
propose a set of symbolic index reduction rules that allows us to define tensor operators
in differential geometry, such as tensor addition and multiplication, partial derivative,
and covariant derivative, without describing index rules that differ for each operator. In
addition, we propose a set of index completion rules that allow us to concisely define
operators for differential forms, such as wedge product, exterior derivative, and Hodge
operator. A differential form is an important concept that allows us to describe formulae
in differential geometry in a coordinate independent way. It is known that a differential
form can be represented as an anti-symmetric tensor and expressed by omitting its in-
dices in mathematical formulae. If we express differential forms as anti-symmetric tensors
with omitted indices in programs as we do in mathematical formulae, we can design a set
of index completion rules that conforms to the above index reduction rules. Using this
method, we can define operators for differential forms using tensor operators and index
notation. It makes definitions of operators for differential forms concise. In addition, the
users of this computer algebra system can translate mathematical formulae that contain
both tensors and differential forms to programs because both tensor and differential forms
are represented as tensors and follow the same index rules. Programs of this computer
algebra system are close to a form of formulae in differential geometry. Therefore, it is
easy to use this computer algebra system even for researchers of mathematics who are
not used to programming.

Finally, we discuss a general method for creating a new language facility by reviewing
the processes of designing these two language facilities. To this end, we divide the process
of creating a new language facility into three steps, classify our contributions for the two
language facilities into these three steps, and list commonalities.



論文要旨

簡潔に記述できるアルゴリズムの範囲を広げる新しいプログラミング言語は，既知のコ
ンピュータ科学の問題のプログラミングを簡単にするだけでなく，従来プログラミングが
難しいために敬遠されていた問題を扱いやすくし，コンピュータ科学の扱う範囲を広げる
ために重要である．本論文は，(i)集合や，グラフ，数式のように 1つの定まった標準形を
持たないデータ型に対しても適用可能なパターンマッチと (ii)テンソルの添字記法を使っ
て微分幾何の計算を数式に近い形で記述する機能の 2つの独立した新しい言語機能をもつ
プログラミング言語 Egisonを提案する．
Egisonのパターンマッチは，ユーザーがパターンマッチ・アルゴリズムをカスタマイズ

可能でかつ，バックトラッキング・アルゴリズムによって実行可能な非線形パターンをサ
ポートするという特徴をもつ．このパターンマッチからは，パターン中の繰り返しを表現
するためのループ・パターンと添字付きパターン変数や，パターンマッチの順序を制御す
るためのシーケンシャル・パターンという新しい種類のパターンが生まれる．本論文の前
半では，このパターンマッチ機能をプログラミング言語に実装する手法を述べたあと，こ
のパターンマッチを活かしたプログラミングテクニックをまとめ，パターンマッチ指向プ
ログラミングというパラダイムを提唱する．そして，このパターンマッチの 3つの応用事
例を通してその有効性を実証する．1つめに，従来は再帰を使って記述されていたバック
トラッキングのためのループをパターンの中に押し込めることにより，deleteや concat，
uniqueのような基本的なリスト関数と SATソルバーを再実装する．2つめに，集合・ツ
リー・グラフに対してバックトラッキング・アルゴリズムで実行可能な非線形パターンを
記述できるために，さまざまな種類のデータベースに対して統一的な形のクエリー言語を
提供できることをみせる．3つめに，数式に対するパターンマッチ・エンジンをコンパクト
に実装できるため，数式処理システムの実装が簡単になることをみせる．Egisonのパター
ンマッチの実装には，Haskellによるインタプリタと，Haskellのメタプログラミング機能
を用いて実装されたライブラリがある．Haskellによるライブラリ実装は，Egisonパター
ンマッチをバックトラッキング・モナドを使った Haskellプログラムに変換する．同じ意
味の Haskellプログラムに変換するため，Egisonパターンマッチが Haskellと同等の速度
で実行できる．この Haskellライブラリを利用して，Egisonインタプリタには数式処理シ
ステムとしての機能が実装されている．
微分幾何に現れるテンソル計算の記述を簡潔にする添字記法は，この数式処理システム

に実装されている．本論文の後半では，このテンソル計算を簡潔に表現するための手法を
提案する．まず，微分幾何に現れる演算子（テンソルの足し算や掛け算，偏微分，共変微
分など）の定義を簡潔にする添字の簡約ルールを提案する．添字の簡約ルールを適切に設
計すると，演算子ごとに異なる添字のルールを記述することなしに微分幾何の演算子を定
義できる．さらに，微分形式に対する演算子（ウェッジ積，外微分，ホッジ作用素など）の
定義を簡潔にする添字の補完ルールを提案する．微分形式は，座標系の選択によらない微
分幾何の数式の表現を可能にする重要な概念である．微分形式は歪対称テンソルとして表
現できることが知られ，その添字を省略することによって数式の上で表現されることがあ
る．これと同様に，添字が省略された歪対称テンソルとして微分形式をプログラム上で表
現すると，上記のテンソルの添字の簡約ルールと適合する添字の補完ルールを設計できる．
この手法を使うと，微分形式の演算子の定義にテンソルの演算子と添字記法が使えるため，



それらの定義が簡潔になる．また，テンソルと微分形式の両方がテンソルとして表現され
同一の添字の簡約ルールに従うため，この数式処理システムのユーザーは，テンソルと微
分形式が混ざった数式もそのままプログラムに落とすことができる．この数式処理システ
ムのプログラムは微分幾何に現れる数式に近いため，あまりプログラミングに慣れていな
い数学の研究者にとってもこの数式処理システムは扱いやすく，実際の微分幾何の研究で
現れる複雑な計量をもつ複素多様体の不変量の計算にこの数式処理システムは既に使われ
ている．
最後に，これら 2つの言語機能を設計した過程を振り返ることにより，新しい言語機能

を作成するための一般的な手法について論じる．そのために，新しい言語機能作成の過程
を 3つのステップにわけ，本論文で提案した 2つの言語機能の作成のための貢献をこの 3

つのステップごとに分類し，共通点を列挙する．
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Chapter 1

Introduction

1.1 Motivation

The advance of science is inextricably linked with the evolution of notation. New
scientific knowledge leads to the invention of new notations, and new notations
accelerate the advance of science. The evolution of numeric notation is an obvi-
ous example. The numeric notation has been evolved utilizing our knowledge of
arithmetic. The evolved numeric notation (e.g., decimal notation) allows us to
identify numbers with less effort and plays an important role in deepening our
knowledge. New scientific knowledge does not only evolve the existing notation
but also expand the target area of notation. The invention of a programming lan-
guage, a set of notations for describing algorithms, is an example. The invention
of computers leads us to use programming languages for describing algorithms
instead of natural languages. From the latter half of the twentieth century, many
notations have been invented in the field of programming languages. Lexical
scoping [20], high-order functions [63, 52], and pattern matching [24] are features
specific to programming invented for describing algorithms.

In this thesis, we aim to develop a programming language that expands the
range of algorithms that we can describe without translating our recognition of
the algorithms for computers. We propose the Egison programming language
with two independent new features: (i) a pattern-match facility for non-free data
types ; (ii) a facility for describing tensor calculus in differential geometry in a form
similar to mathematical formulae using index notation. The proposed language
has already been implemented and is open-sourced.

Non-free data types are data types whose data have no canonical forms. For
example, multisets are non-free data types because the multiset {a, b, b} has two
other equivalent but literally different forms {b, a, b} and {b, b, a}. We developed
the pattern-match facility for non-free data types. Pattern matching for poker
hands is a simple example of our pattern matching. In Figure 1.1, all poker hands
are described in a single pattern. When designing the syntax of our language,
we aimed to make this poker hand program as concise as possible. This concise
definition of poker hands is achieved by three features of our pattern match fa-
cility. First, in line 2 we specify that we pattern-match a list of playing cards
as a multiset of cards. For determining poker hand, we do not care about the
order of the cards. By pattern matching as a multiset, we can write a pattern
without taking care of the order of the cards. In our language, the pattern-match
method for multisets is not built-in. The users can define pattern-match methods
for each non-free data type including multisets in our language. Second, we use
non-linear patterns for describing each poker hand. Non-linear patterns allow
multiple occurrences of the same variables in a pattern. For example, we use
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1 def poker cs :=

2 match cs as multiset card with

3 | [card $s $n, card #s #(n-1), card #s #(n-2), card #s #(n-3), card #s #(n-4)]

4 -> "Straight flush"

5 | [card _ $n, card _ #n, card _ #n, card _ #n, _]

6 -> "Four of a kind"

7 | [card _ $m, card _ #m, card _ #m, card _ $n, card _ #n]

8 -> "Full house"

9 | [card $s _, card #s _, card #s _, card #s _, card #s _]

10 -> "Flush"

11 | [card _ $n, card _ #(n-1), card _ #(n-2), card _ #(n-3), card _ #(n-4)]

12 -> "Straight"

13 | [card _ $n, card _ #n, card _ #n, _, _]

14 -> "Three of a kind"

15 | [card _ $m, card _ #m, card _ $n, card _ #n, _]

16 -> "Two pair"

17 | [card _ $n, card _ #n, _, _, _]

18 -> "One pair"

19 | [_, _, _, _, _] -> "Nothing"

Figure 1.1: Pattern matching for poker hand

non-linear patterns for describing that all cards have the same suit (the value
pattern #s matches the value bound to the pattern variable $s). For handling
non-linear patterns, we need to traverse the search trees for pattern matching
efficiently because non-free data have multiple decompositions. Our main tech-
nical challenge is to achieve both the customizability of pattern-match methods
and the expressive patterns simultaneously. In this thesis, we present how we
designed such a language.

By importing the mathematical notations in tensor calculus into program-
ming, we aim to make programs for tensor calculus concise. Figure 1.2a shows
the samples of formulae in tensor calculus. In Figure 1.2b, we express these for-
mulae in our language. We can observe that each term in the formulae is directly
translated into our language. Figure 1.2c shows the definition of tensor operators
that appear in Figure 1.2b. Each tensor operator is defined in one line. Our main
achievement in tensor calculus is that we enable the direct translation of a for-
mula that uses tensor index notation, keeping the definition of tensor operators
concise. For this purpose, we have reorganized the mathematical definition of
tensor notations because the semantics of some notations are vague and complex
to implement them as a part of programming languages.

There is great significance in the study of notation itself. There are several
interesting problems: “Is there a general way to find a new notation?”, “Is there
a formal method for measuring the superiority of multiple notations?” Getting
close to the answers to these questions is the underlying motivation of this work.

1.2 Pattern-Match-Oriented Programming

How do you answer the question, “What is the map function?” We believe most
people answer as follows:

1. “The map function takes a function and a list and returns a list of the
results of applying the function to all the elements of the list.”

Few people answer as follows:
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(a) Mathematical formulae in tensor calculus

def R~i_j_k_l := withSymbols [m]

∂/∂ Γ~i_j_l x~k - ∂/∂ Γ~i_j_k x~l + Γ~m_j_l . Γ~i_m_k - Γ~m_j_k . Γ~i_m_l

def Ω~i_j := withSymbols [k]

antisymmetrize (d ω~i_j + ω~i_k ∧ ω~k_j)

(b) The above formulae in our language

def (.) %t1 %t2 := contractWith (+) (t1 * t2)

def d %A := !(flip ∂/∂) coord A

def (∧) %A %B := A !. B

(c) Definition of tensor operators in our language

Figure 1.2: Tensor calculus in our language

2. “The map function takes a function and a list and returns an empty list if
the argument list is empty. Otherwise, it returns a list whose head element
is the result of applying the function to the head element of the argument
list, and the tail part is the result of applying the map function recursively
to the tail part of the argument list.”

Obviously, there is a significant gap between these two explanations. The
former explanation is simpler and more straightforward than the latter. However,
the current functional definition of map is based on the latter.

map _ [] = []

map f (x : xs) = (f x) : (map f xs)

Interestingly, this basic definition of map has been almost unchanged for 60 years
since McCarthy first presented the definition of maplist in [62]. The only difference
is a way for describing conditional branches: McCarthy uses predicates, whereas
Haskell uses pattern matching.

maplist[x ;f] = [null[x] -> NIL; T -> cons[f[car[x]]; maplist[cdr[x]; f]]]

Recursion used in the above definitions is a mathematically simple but power-
ful framework for representing computations and has been a very basic construct
of functional programming for describing loops in programs. Recursion is heavily
used for definitions of many basic functions such as filter, concat, and unique and
most of them are also simple enough.

However, as mentioned earlier, there does exist a substantial cognitive distance
between the recursive definition and the simplest explanation of that definition.
To illustrate this gap, we define mapWithBothSides, a variation of map. We often meet
a situation to define a variant of basic functions specific to a target algorithm.
Defining these utility functions is one of the cumbersome tasks in programming.
Therefore, considering a comfortable method for defining these utility functions
is important.
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mapWithBothSides takes a function of three arguments and a list, and returns a
list of applying the function for all three tuples consisting of an initial prefix, the
next element, and the remaining suffix. mapWithBothSides is used for generating
lists by rewriting the element of an input list. This function is useful for handling
logical formulae, for example. We define mapWithBothSides with a helper function
as follows.

mapWithBothSides f xs = mapWithBothSides' f [] xs

where

mapWithBothSides' f xs [] = []

mapWithBothSides' f xs (y : ys) = (f xs y ys) : (mapWithBothSides' f (xs ++ [y

]) ys)

The explanation of map given at the beginning and the above explanation of
mapWithBothSides are similar, and their definitions should be similar to each other.
However, their definitions are very different from each other. A hint for filling
the gap is hidden behind these differences.

The cause of these differences is the lack of a pattern like hs ++ ts that di-
vides a target list into an initial prefix and the remaining suffix. For example,
the list [1,2] has multiple decompositions for the pattern hs ++ ts: [] ++ [1,2],
[1] ++ [2], and [1,2] ++ []. We call this pattern a join pattern. Unlike traditional
pattern matching for algebraic data types, this pattern has multiple decomposi-
tions. Pattern matching that can handle multiple results is necessary for handling
join patterns.

In our language Egison whose distinguishing feature is non-linear pattern
matching with backtracking [38], we can define map and mapWithBothSides concisely
and in a very similar way. In fact, the author got an idea of the language when
he implemented mapWithBothSides for implementing an automated theorem con-
jecturer.

def map f xs := matchAll xs as list something with _ ++ $x :: _ -> f x

def mapWithBothSides f xs := matchAll xs as list something with $hs ++ $x :: $ts

-> f hs x ts

In the above program, the join pattern is effectively used. matchAll is a key
built-in syntactic construct of Egison for handling multiple pattern-matching re-
sults. matchAll collects all the pattern-matching results and returns a collection
where the body expression has been evaluated for each result. matchAll takes one
additional argument matcher that is list something in the above cases. A matcher
is an Egison specific object that knows how to decompose the target following the
given pattern. The matcher is specified between as and with, which are reserved
words. list is a user-defined function that takes a matcher for the elements and
returns a matcher for lists. list defines a method for interpreting the cons (::)
and join (++) pattern. something is the only built-in matcher in Egison. something

can be used for pattern-matching arbitrary objects but can handle only pattern
variables and wildcards. As a result, list something is evaluated as a matcher
for pattern-matching a list of arbitrary objects. _ that appears in a pattern is a
wildcard. Pattern variables are prepended with $.

These definitions of the variations of map are close to the explanation of map

given at the beginning. We achieved this by hiding the recursions in the defini-
tion of list, which defines the pattern-matching algorithm for the join patterns.
We call this programming style that replaces explicit recursions with intuitive
patterns, pattern-match-oriented programming style.

In this thesis, we advocate pattern-match-oriented programming as a new pro-
gramming paradigm. Pattern-match-oriented programming is a paradigm that
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makes descriptions of algorithms concise by replacing loops for traversal and
enumeration that can be done by simple backtracking. These loops are mixed in
programs with loops that are essential for lowering the time complexity of algo-
rithms and make programs complicated. Pattern-match-oriented programming
separates these two kinds of loops and allows programmers to concentrate on
describing the essential part of algorithms.

The above examples show just a part of the expressiveness of pattern-match-
oriented programming. For example, non-linear patterns enable to describe more
popular list processing functions such as unique and intersect in pattern-match-
oriented style. Furthermore, pattern matching for general non-free data types
(e.g., multisets, sets, and mathematical expressions) diversifies the applications of
pattern-match-oriented programming significantly. This thesis introduces full fea-
tures of the Egison pattern-match-oriented programming language and presents
all the techniques we discovered so far for replacing explicit recursions with an
intuitive pattern.

1.3 Importing Mathematical Notations from Tensor Calculus

Programming languages are evolved also by importing notations from mathe-
matics. For example, decimal number system, function modularization, and infix
notation for basic arithmetic operators have been imported in most program-
ming languages [19]. Importing mathematical notations into programming is
sometimes difficult. This is because the semantics of some mathematical nota-
tions are vague and complex to implement as a part of programming languages.
For example, tensor index notation invented by Ricci and Levi-Civita [71] for
dealing with high-order tensors is one such notation.

The latter part of this thesis discusses a method for importing tensor in-
dex notation into programming languages. Tensor calculus often appears in the
various fields of computer science. Tensor calculus is an important application
of symbolic computation [57]. Tensor calculus is heavily used in computational
physics [49] and computer visions [47]. Tensor calculus also appears in machine
learning to handle multidimensional data [50]. Importing tensor index notation
makes programming in these fields easy.

Importing tensor index notation into programming languages is difficult be-
cause the symbolic index rules vary by operators, especially by tensor addition
and multiplication as shown in Table 1.1. We will show examples. Let u and v
be vectors:

• the expression ui + vi returns a vector, but uivi is an invalid expression;
(The expression uivi returns the inner product in Euclidean spaces where
we can switch a superscript and a subscript freely. But we do not take this
exception into account.)

• the expression ui + vi is an invalid expression, but uivi is valid and returns
the inner product;

• the expression ui+ vj is an invalid expression, but uivj is valid and returns
the tensor product.

Thus, each tensor operator has different symbolic index rules. Therefore, we
need to specify symbolic index rules for each function when defining them. It
is a verbose task. Furthermore, we need to design a syntactic construct for
describing index rules. Such a new syntactic construct makes a programming
language complex.
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Tensor addition Tensor multiplication

ui + vi returns a vector uivi is invalid

ui + vj is invalid uivj returns a matrix

ui + vi is invalid uivi returns a scalar

Table 1.1: Index rules in mathematics

Tensor addition Tensor multiplication

ui + vi returns a vector uivi is invalid

ui + vj returns a matrix uivj returns a matrix

ui + vi returns a matrix uivi returns a scalar

Table 1.2: Our simplified index rules

We propose simplified symbolic index rules shown in Table 1.2 to avoid this
problem. Our simplified rules keep all the mathematically valid expressions valid.
However, some mathematically invalid expressions become valid. For example,
vi+vj is an invalid expression in mathematics but a valid expression in our rules.
Figure 1.3a shows our simplified index rules for tensor addition. By relaxing
the rules that way, we can regard many tensor operators as variations of tensor
addition. For example, tensor multiplication is regarded as an operation that has
an additional procedure, contraction, after multiplying each component of tensors
in the same way as tensor addition (figure 1.3b). Contraction is an operation to
sum up the diagonal components of a tensor when the tensor has a superscript and
subscript with an identical symbol. This point of view reduces the descriptions
of symbolic index rules for defining tensor operators. We show that various
operators in differential geometry can be defined concisely.

Furthermore, we propose index completion rules for omitted tensor indices.
We show that our index completion rules enable us to define operators for dif-
ferential forms such as the wedge product, exterior derivative, and Hodge star
operator.

In our language, we can describe a program whose form is close to formu-
lae in differential geometry. Therefore, it is easy to use this computer algebra
system even for researchers of mathematics who are not used to programming.
Due to this advantage, our language already has been applied in the research of
mathematics [37].

1.4 Outline

The rest of thesis is organized as follows. Chapter 2 proposes a criteria that
should be fulfilled for practical pattern matching for non-free data types and de-
signs our programming language that satisfies the criteria. Chapter 3 discusses
how programming changes by utilizing our pattern-match system and proposes a
new programming paradigm called pattern-match-oriented programming. Chap-
ter 4 presents our Haskell library that embeds our pattern-match system into
Haskell. For this purpose, we design a set of typing rules and develop a method
for transforming our pattern-match expression to a Haskell program that uses
backtracking monad. Chapter 5 presents the method for importing notations of
tensor calculus into programming languages. The final chapter summarizes the
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thesis and discusses future work.
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Chapter 2

Design of Pattern-Matching System

2.1 Introduction

Pattern matching is an important feature of programming languages featuring
data abstraction mechanisms. Data abstraction serves users with a simple method
for handling data structures that contain plenty of complex information. Us-
ing pattern matching, programs using data abstraction become concise, human-
readable, and maintainable. Most of the recent practical programming languages
allow users to extend data abstraction e.g. by defining new types or classes, or
by introducing new abstract interfaces. Therefore, a good programming language
with pattern matching should allow users to extend its pattern-matching facility
akin to the extensibility of data abstraction.

Earlier, pattern-matching systems used to assume a one-to-one correspon-
dence between patterns and data constructors. However, this assumption became
problematic when one handles data types whose data have multiple representa-
tions. To overcome this problem, Wadler proposed the pattern-matching system
views [92] that broke the symmetry between patterns and data constructors.
Views enabled users to pattern-match against data represented in many ways.
For example, a complex number may be represented either in polar or Cartesian
form, and they are convertible to each other. Using views, one can pattern-match
a complex number internally represented in polar form with a pattern written in
Cartesian form, and vice versa， provided that mutual transformation functions
are properly defined. Similarly, one can use the Cons pattern to perform pattern
matching on lists with joins, where a list [1,2] can be either (Cons 1 (Cons 2 Nil))

or (Join (Cons 1 Nil) (Cons 2 Nil)), if one defines a normalization function of lists
with join into a sequence of Cons.

However, views require data types to have a distinguished canonical form
among many possible forms. In the case of lists with join, one can pattern-match
with Cons because any list with join is canonically reducible to a list with join
with the Cons constructor at the head. On the other hand, for any list with join,
there is no such canonical form that has Join at the head. For example, the list
[1,2] may be decomposed with Join into three pairs: [] and [1,2], [1] and [2],
and [1,2] and []. For that reason, views do not support pattern matching of lists
with join using the Join pattern.

Generally, data types without canonical forms are called non-free data types.
Mathematically speaking, a non-free data type can be regarded as a quotient on
a free data type over an equivalence. An example of non-free data types is, of
course, a list with join: it may be viewed as a non-free data type composed of a
(free) binary tree equipped with an equivalence between trees with the same leaf
nodes enumerated from left to right, such as (Join Nil (Cons 1 (Cons 2 Nil))) =
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(Join (Cons 1 Nil) (Cons 2 Nil)). Other typical examples include sets and multi-
sets, as they are (free) lists with obvious identifications. Generally, as shown for
lists with join, pattern matching on non-free data types yields multiple results.∗

For example, multiset {1,2,3} has three decompositions by the insert pattern:
insert(1,{2,3}), insert(2,{1,3}), and insert(3,{1,2}). Therefore, how to
handle multiple pattern-matching results is an extremely important issue when
we design a programming language that supports pattern matching for non-free
data types.

On the other hand, pattern guard is a commonly used technique for filter-
ing such multiple results from pattern matching. Basically, pattern guards are
applied after enumerating all pattern-matching results. Therefore, substantial
unnecessary enumerations often occur before the application of pattern guards.
One simple solution is to break a large pattern into nested patterns to apply pat-
tern guards as early as possible. However, this solution complicates the program
and makes it hard to maintain. It is also possible to statically transform the pro-
gram in a similar manner at the compile time. However, it makes the compiler
implementation very complex. Non-linear pattern is an alternative method for
pattern guard. Non-linear patterns are patterns that allow multiple occurrences
of the same variables in a pattern. Compared to pattern guards, they are not only
syntactically beautiful but also compiler-friendly. Non-linear patterns are easier
to analyze and hence can be implemented efficiently (Section 2.2.1 and 2.3.2).
However, it is not obvious how to extend a non-linear pattern-matching system
to allow users to define an algorithm to decompose non-free data types. We
introduce extensible pattern matching to remedy this issue (Section 2.2.2, 2.3.4,
and 2.5). Extensibility of pattern matching also enables us to define predicate pat-
terns, which are typically implemented as a built-in feature (e.g. pattern guards)
in most pattern-matching systems. Additionally, we improve the usability of pat-
tern matching for non-free data types by introducing a syntactic generalization
for the match expression, called polymorphic patterns (Section 2.2.3 and 2.3.3).
We also present a non-linear pattern-matching algorithm specialized for back-
tracking on infinite search trees and supports pattern matching with infinitely
many results in addition to keeping efficiency (Section 2.4).

In this chapter, we aim to design a programming language that is oriented
toward pattern matching for non-free data types. We summarize the above ar-
gument in the form of three criteria that must be fulfilled by a language in order
to be used in practice:

1. Efficiency of the backtracking algorithm for non-linear patterns,

2. Extensibility of pattern matching, and

3. Polymorphism in patterns.

We believe that the above requirements, called together criteria of practical pat-
tern matching, are fundamental for languages with pattern matching. However,
none of the existing languages and studies [5, 39, 89, 18] fulfill all of them. In
the rest of the chapter, we present a language that satisfies the criteria, together
with comparisons with other languages, several working examples, and formal
semantics. We emphasize that our proposal has been already implemented in
Haskell as the Egison programming language, and is open-sourced [30].

∗In fact, this phenomenon that “pattern matching against a single value yields multiple
results” does not occur for free data types. This is the unique characteristic of non-free data
types.
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The rest of the chapter is organized as follows. Section 2.2 analyzes the ca-
pabilities of the prior work for handling non-free data types and clarifies the
problems to be solved. Section 2.3 shows our design of pattern-match expres-
sions that solves the problems introduced in Section 2.2. Section 2.4 explains the
internal algorithm for executing pattern-match expressions in Section 2.3. Sec-
tion 2.5 explains how users customize the pattern-match method for each non-free
data type in our system. Section 2.6 shows the formal semantics of our language.
Section 2.7 introduces the prior work on pattern-match extensions. Section 2.8
concludes this chapter.

2.2 Motivation

In this section, we discuss the requirements for programming languages to estab-
lish practical pattern matching for non-free data types.

2.2.1 Pattern Guards vs. Non-linear Patterns

Compared to pattern guards, non-linear patterns are a compiler-friendly method
for filtering multiple matching results efficiently. However, non-linear pattern
matching is typically implemented by converting them to pattern guards. For
example, some implementations of functional logic programming languages con-
vert non-linear patterns to pattern guards [18, 17, 44]. This method is inefficient
because it leads to enumerating unnecessary candidates. In the following pro-
gram in Curry, seqN returns "Matched" if the argument list has a sequential N-tuple.
Otherwise, it returns "Not matched". insert is used as a pattern constructor for
decomposing data into an element and the rest ignoring the order of elements.
We will explain the definition of insert in Section 3.5.2.2.

seq2 (insert x (insert (x+1) _)) = "Matched"

seq2 _ = "Not matched"

seq3 (insert x (insert (x+1) (insert (x+2) _))) = "Matched"

seq3 _ = "Not matched"

seq4 (insert x (insert (x+1) (insert (x+2) (insert (x+3) _)))) = "Matched"

seq4 _ = "Not matched"

seq2 (take 10 (repeat 0)) -- returns "Not matched" in O(n^2) time

seq3 (take 10 (repeat 0)) -- returns "Not matched" in O(n^3) time

seq4 (take 10 (repeat 0)) -- returns "Not matched" in O(n^4) time

When we use a Curry compiler such as PAKCS [4] and KiCS2 [23], we see that
“seq4 (take n (repeat 0))” takes more time than “seq3 (take n (repeat 0))” be-
cause seq3 is compiled to seq3' as follows. Therefore, seq4 enumerates

(
n
4

)
candi-

dates, whereas seq3 enumerates
(
n
3

)
candidates before filtering the results. If the

program uses non-linear patterns as in seq3, we easily find that we can check no
sequential triples or quadruples exist simply by checking

(
n
2

)
pairs. However, such

information is discarded during the program transformation into pattern guards.

seq3' (insert x (insert y (insert z _))) | y==x+1 && z==x+2 = "Matched"

seq3' _ = "Not matched"

One way to make this program efficient in Curry is to stop using non-linear
patterns and instead use a predicate explicitly in pattern guards. The following
illustrates such a program.

isSeq2 (x:y:rs) = y == x+1

10



isSeq3 (x:rs) = isSeq2 (x:rs) && isSeq2 rs

perm [] = []

perm (x:xs) = insert x (perm xs)

seq3 xs | isSeq3 ys = "Matched" where ys = perm xs

seq3 _ = "Not matched"

seq3 (take 10 (repeat 0)) -- returns "Not matched" in O(n^2) time

isSeq2 and isSeq3 checks whether the elements of the head part of the argument
list are in sequence or not. perm returns all the permutations of the argument
list. In the program, because of laziness, only the head part of the list is evalu-
ated. In addition, because of sharing [41], the common head part of the list is
pattern-matched only once. Using this call-by-need-like strategy enables efficient
pattern matching on sequential n-tuples. However, this strategy sacrifices the
readability of programs and makes the program obviously redundant. Instead,
we base our work on non-linear patterns and attempt to improve its usability
keeping it compiler-friendly and syntactically clean.

2.2.2 Extensible Pattern Matching

As a program gets more complicated, data structures involved in the program get
complicated as well. A pattern-matching facility for such data structures (e.g.
graphs and mathematical expressions) should be extensible and customizable by
users because it is impractical to provide the data structures for these data types
as built-in data types in general-purpose languages.

In the studies of computer algebra systems, efficient non-linear pattern-matching
algorithms for mathematical expressions that avoid such unnecessary search have
already been proposed [2, 58]. Generally, users of such computer algebra systems
control the pattern-matching method for mathematical expressions by specifying
attributes for each operator. For example, the Orderless attribute of the Wolfram
language indicates that the order of the arguments of the operator is ignored [3].
However, the set of attributes available is fixed and cannot be changed [1]. This
means that the pattern-matching algorithms in such computer algebra systems
are specialized only for some specific data types such as multisets. However, there
are a number of data types we want to pattern-match other than mathematical
expressions, like unordered pairs, trees, and graphs.

Thus, extensible pattern matching for non-free data types is necessary for
handling complicated data types such as mathematical expressions. In this chap-
ter, we design a language that allows users to implement efficient backtracking
algorithms for general non-free data types by themselves. It provides users with
the equivalent power to add new attributes freely by themselves. We discuss this
topic again in Section 2.3.4.

2.2.3 Monomorphic Patterns vs Polymorphic Patterns

Polymorphism of patterns is useful for reducing the number of names used as
pattern constructors. If patterns are monomorphic, we need to use different
names for pattern constructors with similar meanings. As such, monomorphic
patterns are error-prone.

For example, the pattern constructor that decomposes a collection into an
element and the rest ignoring the order of the elements is bound to the name
insert in the sample code of Curry [18] as in Section 2.2.1. The same pattern
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constructor’s name is Add' in the sample program of Active Patterns [39]. How-
ever, these can be considered as a generalized cons pattern constructor for lists to
multisets, because they are the same at the point that both of them are a pattern
constructor that decomposes a collection into an element and the rest.

Polymorphism is important, especially for value patterns. A value pattern is
a pattern that matches when the value in the pattern is equal to the target. It
is an important pattern construct for expressing non-linear patterns. If patterns
are monomorphic, we need to prepare different notations for value patterns of
different data types. For example, we need to have different notations for value
patterns for lists and multisets. This is because the equivalence of objects as lists
and multisets are not equal although both lists and multisets are represented as
a list.

pairsAsLists (insert x (insert x _)) = "Matched"

pairsAsLists _ = "Not matched"

pairsAsMultisets (insert x (insert y _)) | (multisetEq x y) = "Matched"

pairsAsMultisets _ = "Not matched"

pairsAsLists [[1,2],[2,1]] -- returns "Not matched"

pairsAsMultisets [[1,2],[2,1]] -- returns "Matched"

2.3 Proposal

In this section, we introduce our pattern-matching system, which satisfies all
requirements shown in Section 2.2. Our language has Haskell-like syntax. It is
dynamically typed, and as well as Curry, based on lazy evaluation.

2.3.1 The matchAll and match expressions

We explain the matchAll expression. It is a primitive syntax of our language. It
supports pattern matching with multiple results.

We show a sample program using matchAll in the following. In this thesis, we
show the evaluation result of a program in the comment that follows the program.
“--” is the inline comment delimiter of the proposed language.

matchAll [1, 2, 3] as list integer with

$xs ++ $ys -> (xs, ys)

-- [([], [1, 2, 3]), ([1], [2, 3]), ([1, 2], [3]), ([1, 2, 3], [])]

matchAll is composed of an expression called target, matcher, andmatch clause,
which consists of a pattern and body expression. The matchAll expression evaluates
the body of the match clause for each pattern-matching result and returns a
(lazy) collection that contains all results. In the above code, we pattern-match
the target [1, 2, 3] as a list of integers using the pattern $xs ++ $ys. list integer

is a matcher to pattern-match the pattern and target as a list of integers. The
pattern is constructed using the join pattern constructor. $xs and $ys are called
pattern variables. We can use the result of pattern matching referring to them.
A matchAll expression first consults the matcher on how to pattern-match the
given target and the given pattern. Matchers know how to decompose the target
following the given pattern and enumerate the results, and matchAll then collects
the results returned by the matcher. In the sample program, given a join pattern,
list integer tries to divide a collection into two collections. The collection [1,

2, 3] is thus divided into two collections in four ways.
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matchAll can handle pattern matching that may yield infinitely many results.
For example, the following program extracts all twin primes from the infinite list
of prime numbers∗. We will discuss this mechanism in Section 2.4.2.

def twinPrimes :=

matchAll primes as list integer with

| _ ++ $p :: #(p + 2) :: _ -> (p, p + 2)

take 6 twinPrimes

-- [(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43)]

There is another primitive syntax called match expression. While matchAll re-
turns a collection of all matched results, match short-circuits the pattern matching
process and immediately returns if any result is found. Another difference from
matchAll is that it can take multiple match clauses. It tries pattern matching
starting from the head of the match clauses， and tries the next clause if it fails.
Therefore, match is useful when we write conditional branching.

However, match is inessential for our language. It is implementable in terms of
the matchAll expression and macros. The reason is that the matchAll expression is
evaluated lazily, and, therefore, we can extract the first pattern-matching result
from matchAll without calculating other pattern-matching results simply by using
car. We can implement match by combining the matchAll and if expressions using
macros. Furthermore, if is also implementable in terms of the matchAll and
matcher expression as follows. We will explain the matcher expression in Section 2.5.
For that reason, we only discuss the matchAll expression in the rest of the chapter.

defMacro if b e1 e2 :=

head (matchAll b as matcher

$ as something with

| True -> [e1]

| False -> [e2]

| $x -> x)

2.3.2 Efficient Non-linear Pattern Matching with Backtracking

We have designed our language to handle non-linear patterns efficiently. For
example, the calculation time of the following code does not depend on the pattern
length. Both of the following examples take O(n2) time to return the result.

matchAll take n (repeat 0) as multiset integer with

| $x :: #(x + 1) :: _ -> x

-- returns {} in O(n^2) time

matchAll take n (repeat 0) as multiset integer with

| $x :: #(x + 1) :: #(x + 2) :: _ -> x

-- returns {} in O(n^2) time

In our proposal, a pattern is examined from left to right in order, and the binding
to a pattern variable can be referred to in the right side of the pattern. In the
above examples, the pattern variable $x is bound to any element of the collection
since the pattern constructor is insert. After that, the patterns “#(x + 1)” and
“#(x + 2)” are examined. A pattern that begins with “#” is called a value pattern.
The expression following “#” can be any kind of expression. The value patterns
match with the target data if the target is equal to the content of the pattern.

∗We will explain the meaning of the value pattern #(p + 2) and the cons pattern constructor
in Section 2.3.2 and 2.3.3, respectively.
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Therefore, after successful pattern matching, $x is bound to an element that
appears multiple times.

We can more elaborately discuss the difference in the efficiency of non-linear
patterns and pattern guards in general cases. The time complexity involved in
pattern guards is O(np+v) when the pattern matching fails, whereas the time
complexity involved in non-linear patterns is O(np+min(1,v)), where n is the size
of the target object∗, p is the number of pattern variables, and v is the number of
value patterns. The difference between v and min(1, v) comes from the mecha-
nism of non-linear pattern matching that backtracks at the first mismatch of the
value pattern.

Curry n=15 n=25 n=30 n=50 n=100

seq2 1.18s 1.20s 1.29s 1.53s 2.54s

seq3 1.42s 2.10s 2.54s 7.40s 50.66s

seq4 3.37s 16.42s 34.19s 229.51s 3667.49s

Egison n=15 n=25 n=30 n=50 n=100

seq2 0.26s 0.34s 0.43s 0.84s 2.72s

seq3 0.25s 0.34s 0.46s 0.82s 2.66s

seq4 0.25s 0.34s 0.42s 0.78s 2.47s

Table 2.1: Benchmarks of Curry (PAKCS version 2.0.1 and Curry2Prolog(swi
7.6) compiler environment) and Egison (version 3.7.12)

Table 2.1 shows microbenchmark results of non-linear pattern matching for
Curry and Egison. The table shows execution times of the Curry program pre-
sented in Section 2.2.1 and the corresponding Egison program as shown above.
The environment we used was Ubuntu on VirtualBox with 2 processors and 8GB
memory hosted on MacBook Pro (2017) with 2.3 GHz Intel Core i5 processor. We
can see that the execution times in two implementations follow the theoretical
computational complexities discussed above. We emphasize that these bench-
mark results do not mean Curry is slower than Egison. We can write the efficient
programs for the same purpose in Curry if we do not persist in using non-linear
patterns. Let us also note that the current implementation of Egison is not tuned
up and comparing constant times in two implementations is nonsense.

Value patterns are not only efficient but also easy to read once we are used
to them because it enables us to read patterns in the same order the execution
process of pattern matching goes. It also reduces the number of new variables
introduced in a pattern. We explain the mechanism of how the proposed system
executes the above pattern matching efficiently in Section 2.4.

2.3.3 Polymorphic Patterns

The characteristic of the proposed pattern-matching expression is that they take
a matcher. This ingredient allows us to use the same pattern constructors for
different data types.

For example, one may want to pattern-match a collection [1, 2, 3] some-
times as a list and other times as a multiset or a set. For these three types, we can
naturally define similar pattern-matching operations. One example is the cons
pattern, which is also called insert in Section 2.2.1 and 2.3.2. Given a collection,

∗Here, we suppose that the number of decompositions by each pattern constructor can be
approximated by the size of the target object.
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pattern $x :: $rs divides it into the “head” element and the rest. When we use
the cons pattern for lists, it either yields the result which is uniquely determined
by the constructor, or just fails when the list is empty. On the other hand, for
multisets, it non-deterministically chooses an element from the given collection
and yields many results. By explicitly specifying which matcher is used in match
expressions, we can uniformly write such programs in our language:

matchAll [1, 2, 3] as list integer with

| $x :: $rs -> (x, rs)

-- [(1, [2, 3])]

matchAll [1, 2, 3] as multiset integer with

| $x :: $rs -> (x, rs)

-- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

matchAll [1, 2, 3] as set integer with

| $x :: $rs -> (x, rs)

-- [(1, [1, 2, 3]), (2, [1, 2, 3]), (3, [1, 2, 3])]

In the case of lists, the head element $x is simply bound to the first element of the
collection. On the other hand, in the case of multisets or sets, the head element
can be any element of the collection because we ignore the order of elements. In
the case of lists or multisets, the rest elements $rs are the collection that is made
by removing the “head” element from the original collection. However, in the
case of sets, the rest elements are the same as the original collection because we
ignore the redundant elements. If we interpret a set as a collection that contains
infinitely many copies of each element, this specification of cons for sets is natural.
This specification is useful, for example, when we pattern-match a graph as a set
of edges and enumerate all paths with some fixed length including cycles without
redundancy.

Polymorphic patterns are useful especially when we use value patterns. As
well as other patterns, the behavior of value patterns is dependent on matchers.
For example, equality [1, 2, 3] = [2, 1, 3] between collections is false if we re-
gard them as mere lists but true if we regard them as multisets. Still, thanks
to the polymorphism of patterns, we can use the same syntax for both of them.
This greatly improves the readability of the program and makes programming
with non-free data types easy.

matchAll [1, 2, 3] as list integer with

| #[2, 1, 3] -> "Matched"

-- []

matchAll [1, 2, 3] as multiset integer with

| #[2, 1, 3] -> "Matched"

-- {"Matched"}

We can pass matchers to a function because matchers are first-class objects.
It enables us to utilize polymorphic patterns for defining function. The following
is an example utilizing polymorphism of value patterns.

def elem/m m x xs :=

match xs as list m with

| _ ++ #x :: _ -> True

| _ -> False

2.3.4 Extensible Pattern Matching

In the proposed language, users can describe methods for interpreting patterns
in the definition of matchers. Matchers appeared up to here are defined in our
language. We show an example of a matcher definition. We will explain the
details of this definition in Section 2.5.1.
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def unorderedPair m :=

matcher

| ($, $) as (m, m) with

| ($x, $y) -> [(x, y), (y, x)]

| $ as (eq) with

| $tgt -> [tgt]

An unordered pair is a pair ignoring the order of the elements. For example,
the tuple (2, 5) is equivalent to (5, 2), if we regard them as unordered pairs.
Therefore, the tuple (2, 5) is successfully pattern-matched with pattern (#5, $x).

matchAll (2, 5) as unorderedPair integer

| (#5, $x) -> x

-- [2]

We can define matchers for more complicated data types. For example, Egi con-
structed a matcher for mathematical expressions for building a computer algebra
system on our language [31, 32]. His computer algebra system is implemented
as an application of the proposed pattern-matching system. The matcher for
mathematical expressions is used for implementing simplification algorithms of
mathematical expressions. A program that converts a mathematical expression
object n cos2(θ) + n sin2(θ) to n can be implemented as follows. (Here, we intro-
duced the mathExpr matcher and some syntactic sugar for patterns.)

def simplifyCosAndSinInPoly poly :=

match poly as mathExpr with

$n * (#cos $x)^#2 * $y + #n * (#sin #x)^#2 * #y + r ->

simplifyCosAndSinInPoly (n * y + r)

_ -> poly

2.4 Algorithm

This section explains the pattern-matching algorithm of the proposed system.
The formal definition of the algorithm is given in Section 2.6. The method for
defining matchers explained in Section 2.5 is deeply related to the algorithm.

2.4.1 Execution Process of Non-linear Pattern Matching

Let us show what happens when the system evaluates the following pattern-
matching expression.

matchAll [2, 8, 2] as multiset integer with

| $m :: #m :: _ -> m

-- [2, 2]

Figure 2.1 shows one of the execution paths that reaches a matching result. First,
the initial matching state is generated (step 1). A matching state is a datum that
represents an intermediate state of pattern matching. A matching state is a
compound type consisting of a stack of matching atoms, an environment, and
intermediate results of the pattern matching. A matching atom is a tuple of
a pattern, a matcher, and an expression called target. MState denotes the data
constructor for matching states. env is the environment when the evaluation
enters the matchAll expression. A stack of matching atoms contains a single
matching atom whose pattern, target, and matcher are the arguments of the
matchAll expression.

In our proposal, pattern matching is implemented as a reduction of matching
states. In a reduction step, the top matching atom in the stack of matching
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1 MState [($m :: #m :: _, multiset integer, [2, 8, 2])] env []

2
MState [($m, integer, 2), (#m :: _, multiset integer, [8, 2])] env []

MState [($m, integer, 8), (#m :: _, multiset integer, [2, 2])] env []

MState [($m, integer, 2), (#m :: _, multiset integer, [2, 8])] env []

3 MState [($m, something, 2), (#m :: _, multiset integer, [8, 2])] env []

4 MState [(#m :: _, multiset integer, [8, 2])] env [(m, 2)]

5
MState [(#m, integer, 8), (_, multiset integer, [2])] env [(m, 2)]

MState [(#m, integer, 2), (_, multiset integer, [8])] env [(m, 2)]

6 MState [(_, multiset integer, [8])] env [(m, 2)]

7 MState [(_, something, [8])] env [(m, 2)]

8 MState [] env [(m, 2)]

Figure 2.1: Reduction path of matching states

atoms is popped out. This matching atom is passed to the procedure called
matching function. The matching function is a function that takes a matching
atom and returns a list of lists of matching atoms. The behavior of the matching
function is controlled by the matcher of the argument matching atom. We can
control the behavior of the matching function by defining matchers properly. For
example, we obtain the following results by passing the matching atom of the
initial matching state to the matching function.

matchFunction ($m :: #m :: _, multiset integer, [2, 8, 2]) =

[ [($m, integer, 2), (#m :: _, multiset integer, [8, 2])]

[($m, integer, 8), (#m :: _, multiset integer, [2, 2])]

[($m, integer, 2), (#m :: _, multiset integer, [2, 8])] ]

Each list of matching atoms is prepended to the stack of the matching atoms.
As a result, the number of matching states increases to three (step 2). Our
pattern-matching system repeats this step until all the matching states vanish.

For simplicity, in the following, we only examine the reduction of the first
matching state in step 2. This matching state is reduced to the matching state
shown in step 3. The matcher in the top matching atom in the stack is changed
to something from integer, by definition of integer matcher. something is the only
built-in matcher of our pattern-matching system. something can handle only wild-
cards or pattern variables, and is used to bind a value to a pattern variable. This
matching state is then reduced to the matching state shown in step 4. The top
matching atom in the stack is popped out, and a new binding (m, 2) is added to
the collection of intermediate results. Only something can append a new binding
to the result of pattern matching.

Similarly to the preceding steps, the matching state is then reduced as shown
in step 5, and the number of matching states increases to 2. #m is pattern-matched
with 8 and 2 by integer matcher in the next step. When we pattern-match with
a value pattern, the intermediate results of the pattern matching is used as an
environment to evaluate it. In this way, “m” is evaluated to 2. Therefore, the
first matching state fails to pattern-match and vanishes. The second matching
state succeeds in pattern matching and is reduced to the matching state shown
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in step 6. In step 7, the matcher is simply converted from multiset integer to
something, by definition of multiset integer. Finally, the matching state is reduced
to the empty collection (step 8). No new binding is added because the pattern
is a wildcard. When the stack of matching atoms is empty, reduction finishes
and the matching patching succeeds for this reduction path. The matching result
(m, 2) is added to the entire result of pattern matching.

We can check the pattern matching for sequential triples and quadruples are
also efficiently executed in this algorithm.

2.4.2 Pattern Matching with Infinitely Many Results

The proposed pattern-matching system can eventually enumerate all successful
matching results when matching results are infinitely many. It is performed by
reducing the matching states in proper order. Suppose the following program:

take 8 (matchAll nats as set integer with $m :: $n :: _ -> (m, n))

-- [(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3)]

Figure 2.2 shows the search tree of matching states when the system executes
the above pattern-matching expression. Rectangles represent matching states,
and circles represent final matching states of successful pattern matching. The
rectangle at the upper left is the initial matching state. The rectangles in the
second row are the matching states generated from the initial matching state one
step. Circles o8, r9, and s9 correspond to pattern-matching results [(m, 1), (n,

1)], [(m, 1), (n, 2)], and [(m, 2), (n, 1)], respectively.
One issue on naively searching this search tree is that we cannot enumerate

all matching states either in depth-first or breadth-first manners. The reason is
that the widths and depths of the search tree can be infinite. Widths can be
infinite because a matching state may generate infinitely many matching states
(e.g., the width of the second row is infinite), and depths can be infinite when we
extend the language with a notion such as recursively defined patterns.

To resolve this issue, we reshape the search tree into a reduction tree as pre-
sented in Figure 2.3. A node of a reduction tree is a list of matching states, and a
node has at most two child nodes, left of which is the matching states generated
from the head matching state of the parent, and the right of which is a copy of
the tail part of the parent matching states. At each reduction step, the system
has a list of nodes. Each row in Figure 2.3 denotes such a list. One reduction
step in our system proceeds in the following two steps. First, for each node, it
generates a node from the head matching state. Then, it constructs the nodes for
the next step by collecting the generated nodes and the copies of the tail parts
of the nodes. The index of each node denotes the depth in the tree the node is
checked at. Since widths of the tree are at most 2n for some n at any depth, all
nodes can be assigned some finite number, which means all nodes in the tree are
eventually checked after a finite number of reduction steps.

We adopt breadth-first search strategy as the default traverse method be-
cause there are cases that breadth-first traverse can successfully enumerate all
pattern-matching results while depth-first traverse fails to do so when we han-
dle pattern matching with infinitely many results. However, of course, when
the size of the reduction tree is finite, the space complexity for depth-first tra-
verse is less expensive. Furthermore, there are cases that the time complexity for
depth-first traverse is also less expensive when we extract only the first several
successful matches. Therefore, to extend the range of algorithms we can express
concisely with pattern matching keeping efficiency, providing users with a method
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Figure 2.2: Search tree Figure 2.3: Binary reduction tree

for switching search strategy of reduction trees is important. We leave the further
investigation of this direction as interesting future work.

2.5 User-Defined Matchers

This section explains how to define matchers from scratch through examples.

2.5.1 Matcher for Unordered Pairs

We explain how the unorderedPairmatcher shown in Section 2.3.4 works. unorderedPair

is defined as a function that takes and returns a matcher to specify how to
pattern-match against the elements of a pair. A matcher is defined using the
matcher expression. The matcher expression is a built-in syntax of Egison. matcher

takes a collection of matcher clauses. A matcher clause is a triple of a primitive-
pattern pattern, a next-matcher expression, and a next-target expression.

A matcher is a kind of function that takes a pattern and target, and returns
lists of the next matching atoms. A matching atom is a triple of a pattern, target,
and matcher. A primitive-pattern pattern matches a pattern. Patterns that
match with pattern holes ($ inside primitive-pattern patterns) are next patterns.
A next-matcher expression returns the next matchers. A next-target expression
is a function that takes a target and returns a list of the next targets. A matcher
generates a list of the next matching atoms by combining the next patterns,
the next matchers, and a list of next targets. The formal syntax of the matcher

expression is found in Figure 2.4 in Section 2.6.
unorderedPair has two matcher clauses. The primitive-pattern pattern of the

first matcher clause is ($, $). This matcher clause defines the interpretation of the
tuple pattern. This pattern contains two pattern holes $. It means that it inter-
prets the first and second elements of the tuple pattern by the matchers specified
by the next-matcher expression. In this example, since the next-matcher expres-
sion is (m, m), both of the elements of the tuple pattern are pattern-matched us-
ing the matcher given by m. The primitive-data-match clause of the first matcher
clause is ($x, $y) -> [(x, y), (y, x)]. The pattern ($x, $y) is pattern-matched
with the target datum such as (2, 5), and $x and $y is matched with 2 and
5, respectively. The primitive-data-match clause returns [(2, 5), (5, 2)]. A
primitive-data-match clause returns a collection of next-targets. This means the
patterns “#5” and $x are matched with the targets 2 and 5, or 5 and 2 using the
integer matcher in the next step, respectively. Pattern matching of primitive-
data-patterns is similar to pattern matching against algebraic data types in or-
dinary functional programming languages. As a result, the first matcher clause
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works in the matching function as follows.

matchFunction [($x, $y) (unorderedPair integer) (2, 5)] =

[ [($x, integer, 2), ($y, integer, 5)] [($x, integer, 5), ($y, integer, 2)] ]

The second matcher clause is rather simple; this matcher clause simply con-
verts the matcher of the matching atom to the something matcher.

2.5.2 Case Study: Matcher for Multisets

As an example of how we can implement matchers for user-defined non-free data
types, we show the definition of multiset matcher. We can define it simply by
using the list matcher. multiset is defined as a function that takes and returns
a matcher.

def multiset a :=

matcher

| [] as () with

| [] -> [()]

| _ -> []

| $ :: _ as a with

| $tgt -> tgt

| $ :: $ as (a, multiset a) with

| $tgt ->

matchAll tgt as list a with

| $hs ++ $x :: $ts -> (x, hs ++ ts)

| #$val as () with

| $tgt ->

match (val, tgt) as (list a, multiset a) with

| ([], []) -> [()]

| ($x :: $xs, #x :: #xs) -> [()]

| (_, _) -> []

| $ as (something) with

| $tgt -> [tgt]

The multiset matcher has five matcher clauses. The first matcher clause han-
dles a nil pattern, and it checks whether the target is an empty collection or
not. The second and third matcher clauses handle a cons pattern. The fourth
matcher clause handles a value pattern. This matcher clause defines the equality
of multisets. The fifth matcher clause handles the other patterns for multiset: a
pattern variable and wildcard.

First, we focus on the third matcher clause. The primitive-pattern pattern
of the second matcher clause is $ :: $, and the next matcher expression is (a,

multiset a). It means two arguments of the cons pattern are next patterns and
they are pattern-matched using the a and multiset a matchers, respectively. a

is an argument of multiset and the matcher for inner elements of a multiset.
In the next target expression, a simple join-cons pattern is used to decompose
a target collection into an element and the rest collection. For example, when
the target is a collection [1,2,3], this next-target expression returns [(1,[2,3])

,(2,[1,3]),(3,[1,2])]. Each tuple of the next targets is pattern-matched using
the next patterns and the next matchers recursively. For example, 1 and [2,3]

are pattern-matched using the a and multiset a matcher with the first and the
second argument of the cons pattern, respectively.

Next, we focus on the second matcher clause. The primitive-pattern pattern
of the second matcher clause is $ :: _. This matcher clause handles a cons pattern
whose second argument is a wildcard. We omit the calculation of the next target.
In this case, we omit the calculation of the rest elements. The next matcher of this
matcher clause is a and the next target is [1,2,3] when the target is a collection
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[1,2,3]. We call the optimization technique that omits the calculation of the next
target when a pattern contains wildcard wildcard optimization.

Next, we focus on the fourth matcher clause. The primitive-pattern pattern of
this matcher clause is #$val. It is called a value-pattern pattern. A value-pattern
pattern matches a value pattern. This matcher clause compares the content of a
value pattern (val) and a target (tgt) as multisets. The match expression is used
for this comparison. The target collection tgt is recursively pattern-matched as
multiset a.

The first and the third match clauses of this match expression are simple. The
first match clause states that it returns [()] when both val and tgt are empty.
This return value means pattern matching for the value pattern succeeded. The
third match clause states that it returns [] if pattern matching for the patterns
of both the first and the second match clause failed. This return value means
pattern matching for the value pattern failed.

The second match clause is the most technical part of this match expression.
The value pattern #xs is recursively pattern-matched using this matcher clause
itself. The collection xs is one element shorter than tgt. Therefore, this recursion
finally reaches the first or the third match clause if val and tgt are finite.

Finally, let us also explain the fifth matcher clause. This matcher clause
creates the next matching atom by just changing the matcher from multiset a to
something.

2.5.3 Matcher for Sorted Lists

Modularization of pattern-matching algorithms by matchers not by patterns en-
ables polymorphic patterns. However, its merit extends beyond polymorphic
patterns; matchers enable descriptions of more efficient pattern matching keep-
ing patterns concise. The reason is that pattern matching against patterns inside
matcher definitions allows us to describe more detailed pattern-matching algo-
rithms. This section shows such an example, a matcher for sorted lists.

The program that used a doubly-nested join-cons pattern for enumerating
pairs of prime numbers whose forms are (p, p + 6) gets slower when the number
of the enumerating prime pairs gets larger. The reason is that the program
enumerates all the combinations of prime numbers. For example, the program
tries to match all the pairs such as (3, 5), (3, 7), (3, 11), (3, 13), (3, 17), (3, 19), and
so on. However, we should avoid enumerating the pairs after (3, 11), the first pair
whose difference is more than 6. This is because it is obvious that the differences
between all the pairs after (3, 11) are more than 6.

take 10 (matchAll primes as sortedList integer with

| _ ++ $p :: (_ ++ #(p + 6) :: _) -> (p, p + 6))

-- [(5,11),(7,13),(11,17),(13,19),(17,23),(23,29),(31,37),(37,43),(41,47),(47,53)

]

We can avoid this unnecessary search by creating a new matcher that is spe-
cialized for sorted lists. We can define such a matcher by adding a matcher clause
with the primitive-pattern pattern $ ++ #$px :: $ to the list matcher as shown
below. This matcher clause improves the theoretical time complexity of the above
pattern from O(n2) to O(n).

def sortedList a := matcher

| $ ++ #$px :: $ as (sortedList a, sortedList a) with

| \$tgt -> matchAll tgt as list a with

| loop $i (1, $n)

((?(\x -> x < px) & $h_i) :: ...)
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Expressions

M ::= c | x | (λ(x, · · · )M) | (M M)

| (M, · · · ) | (C M · · · )
| letrec [(x,M), · · · ] in M

| matchAll M as M with p -> M

| something | matcher [ϕ, · · · ]
p ::= | $x | #M | (C p · · · )
ϕ ::= (pp as M with [dp -> M, · · · ])
pp ::= | $ | #$x | (C pp · · · )
dp ::= $x | (C dp · · · )

Values

V ::= c | (V, · · · ) | (C V · · · )
| (Γ, λ(x, · · · )M)

| (Γ, [ϕ, · · · ])
Values in weak head normal form

v ::= • | c | 〈Γ,M〉
| (v, · · · ) | (C v · · · )
| 〈Γ, λ(x, · · · )M〉
| 〈Γ, [ϕ, · · · ]〉

Environments

Γ ::= ∅ | {x 7→ v} | Γ ∪ Γ

Figure 2.4: Syntax of our language

(#px :: $ts)

-> (map (\i -> h_i) [1..n], ts)

...

We call this optimization technique for nested patterns pattern fusion. In the
above matcher clause, a loop pattern is used. We will explain loop patterns
in Section 3.2.6. Note that pattern fusion is only applicable to Egison that
modularizes pattern-matching methods for each matcher, not for each pattern.
The reason is that we need to match patterns whose form is _ ++ #x :: _ as
mentioned above. If pattern-matching methods are modularized for each pattern,
we need to introduce a new pattern constructor joinCons ... ... that is equivalent
to _ ++ ... :: ... for this purpose.

2.6 Formal Semantics

In this section, we present the syntax and big-step semantics of our language (Fig-
ure 2.4 and 2.5). We use metavariables x, y, z, . . ., M,N, . . ., V,W, . . ., v, w, . . .,
and p, . . . for variables, expressions, values, values in weak head normal form,
and patterns respectively. A value is in weak head normal form when only the
outermost part has been evaluated, whereas a normal value is fully evaluated.
We handle values in weak head normal form for achieving lazy evaluation. In
Figure 2.4, c denotes a constant expression and C denotes a data constructor
name. X · · · in Figure 2.4 means a finite list of X. The syntax of our language
is similar to that of the Haskell programming language. As explained in Sec-
tion 2.3.1, (M, · · · ) and (C M · · · ) denote tuples and data constructions. In this
formal language, lists are represented as an algebraic data type using construc-
tors. ϕ, pp, and dp are called matcher clauses, primitive-pattern patterns, and
primitive-data patterns respectively. Γ,∆, . . . denote variable assignments, i.e.,
partial functions from variables to values. • denotes the dummy object and is
used to implement the recursive definitions by the letrec expressions.

In Figure 2.5, the following notations are used. We write [ai]i to mean a
lazy list whose elements are evaluated to [a1, a2, . . .]. Similarly, [[aij ]j ]i denotes
[[a11, a12, . . .], [a21, a22, . . .], . . .], but each list in the list may have different length.
List of tuples [(a1, b1), (a2, b2), . . .] may be often written as [ai, bi]i instead of
[(ai, bi)]i for short. Concatenation of lists l1, l2 are denoted by l1 + l2, and a : l
denotes [a] + l (adding at the front). ϵ denotes the empty list. In general, x⃗ for
some metavariable x is a metavariable denoting a list of what x denotes. However,
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Deep Evaluation:

Γ,M ↓ c
D-Constant

Γ,M ⇓ c

Γ,M ↓ 〈∆, λ(x, · · · )M〉
D-Lambda

Γ,M ⇓ (∆, λ(x, · · · )M)

Γ,M ↓ 〈∆, [ϕ, · · · ]〉
D-Matcher

Γ,M ⇓ (∆, [ϕ, · · · ])
Γ,M ↓ (〈∆, Ni〉)i ∆, Ni ⇓ Vi(∀i)

D-Tuple
Γ,M ⇓ (Vi)i

Γ,M ↓ (C 〈∆, Ni〉)i ∆, Ni ⇓ Vi(∀i)
D-Cons

Γ,M ⇓ (C Vi)i

Core features as a functional language:

Constant
Γ, c ↓ c

Variable
Γ ∪ {x 7→ v} ∪∆, x ↓ v

Tuple
Γ, (Mi)i ↓ (〈Γ,Mi〉)i

Cons
Γ, (C Mi)i ↓ (C 〈Γ,Mi〉)i

Lambda
Γ, (λ(xi)iM) ↓ (Γ, λ(xi)iM)

Γ,M ↓ (∆, λ(xi)iM
′) Γ, N ↓ (vi)i ∆ ∪ {xi 7→ vi}i,M ′ ↓ w

Application
Γ, (M N) ↓ w

Γ ∪ {xi 7→ •i}i,Mj ↓ 〈∆,Mj〉 (∀j) ∆′ = update(∆, [•i]i, [vi]i) ∆′, N ↓ w
Letrec

Γ, letrec [(xi,Mi)]i in N ↓ w

Evaluation of matcher and matchAll:

Matcher
Γ, matcher [ppi as Mi with [dpij -> Nij ]j ]i ↓ 〈Γ, [ppi,Mi, [dpij , Nij ]j ]⟩

Γ,M ↓ v Γ, N ↓ m [[[p ∼m v],Γ,∅]] ⇛ [∆i]i Γ ∪∆i, L ↓ vi (∀i)
MatchAll

Γ, matchAll M as N with p -> L ↓ [vi]i

Matching states:

MS-Bfs-Nil
ϵ ⇛ ϵ

⃗⃗s ⇒ Γ⃗,
⃗⃗
s′

⃗⃗
s′ ⇛ ∆⃗

MS-Bfs-Cons
⃗⃗s ⇛ Γ⃗ + ∆⃗

s⃗i → optΓi, opt s⃗′i, opt s⃗′′i (∀i)
MS-Step

[s⃗i]i ⇒
∑

i(optΓi),
∑

i(opt s⃗
′
i) +

∑
i(opt s⃗

′′
i)

MS-Failϵ → none, none, none
MS-Success

(ϵ,Γ,∆) : s⃗ → (some∆), none, (some s⃗)

p ∼Γ∪∆
m v ↓ [⃗ai]i,∆

′
MS-Top-MAtom

((p ∼m v) : a⃗,Γ,∆) : s⃗ → none, (some[⃗ai + a⃗,Γ,∆ ∪∆′]i), (some s⃗)

Matching atoms:

MA-Something-WC
∼Γ

something v ↓ [ϵ],∅
MA-Something-PatVar

$x ∼Γ
something v ↓ [ϵ], {x 7→ v}

pp ≈Γ p ↓ fail p ∼Γ
(ϕ⃗,∆)

v ↓ ⃗⃗a,Γ′

MA-PP-Fail
p ∼Γ

((pp,M,σ⃗):ϕ⃗,∆)
v ↓ ⃗⃗a,Γ′

pp ≈Γ p ↓ [p′i]i,∆
′ dp ≈ v ↓ fail p ∼Γ

((pp,M,σ⃗):ϕ⃗,∆)
v ↓ ⃗⃗a,Γ′

MA-DP-Fail
p ∼Γ

((pp,M,(dp,N):σ⃗):ϕ⃗,∆)
v ↓ ⃗⃗a,Γ′

pp ≈Γ p ↓ [p′j ]j ,∆
′ dp ≈ v ↓ ∆′′ ∆ ∪∆′ ∪∆′′, N ↓ [[v′ij ]j ]i ∆,M ↓ [m′

j ]j
MA-Step

p ∼Γ
((pp,M,(dp,N):σ⃗):ϕ⃗,∆)

v ↓ [[p′j ∼m′
j
v′ij ]j ]i,∅

Pattern matching on patterns:

PPP-WC
≈Γ p ↓ [],∅

PPP-PatHole
$ ≈Γ p ↓ [p],∅

Γ,M ↓ v
PPP-ValPat

#$y ≈Γ #M ↓ ϵ, {y 7→ v}
ppi ≈Γ pi ↓ p⃗i,Γi (∀i)

PPP-Constructor
(C pp1 . . . ppn) ≈Γ (C p1 . . . pn) ↓

∑
i p⃗i,

∪
i Γi

Pattern matching on data:

PDP-PatVar
$z ≈ v ↓ {z 7→ v}

dpi ≈ vi ↓ Γi (∀i)
PDP-Constructor

(C dp1 . . . dpn) ≈ (C v1 . . . vn) ↓
∪

i Γi

Figure 2.5: Formal semantics of our language
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we do not mean by x⃗i the i-th element of x⃗; if we write [x⃗i]i, we mean a list of a
list of x.

Our language has some special primitive types: matching atoms a, . . ., match-
ing states s, . . ., primitive-data-match clauses σ, . . ., and matchers m, . . .. A
matching atom consists of a pattern p, a matcher m, and a value v, and written as
p ∼m v. A matching state is a tuple of a list of matching atoms and two variable
assignments. A primitive-data-match clause is a tuple of a primitive-data pattern
and an expression, and a matcher clause is a tuple of a primitive-pattern pattern,
an expression, and a list of data-pattern clauses. A matcher is a pair containing a
list of matcher clauses and a variable assignment. Note that matchers, matching
states, etc. are all values.

The first part of Figure 2.5 defines the semantics for evaluating values in weak
head normal form to the full-evaluated values. The judgment Γ,M ↓ v denotes
that the given expression M is evaluated to v, which is a value in weak head
normal form, under the environment Γ. The judgment Γ,M ⇓ V denotes that
M is evaluated to the full-evaluated value v under Γ. In the evaluation rules
D-Tuple and D-Cons, we can see that the subexpressions inside tuples and
constructor data are deeply evaluated using the judgment ∆, Ni ⇓ Vi recursively.

The second part of Figure 2.5 defines the semantics of the basic features
of functional languages. The semantics for all the expressions in this part are
defined in the common method. The first judgment in the assumption of Letrec
evaluates each expression in bindings after assigning the variables in letrec to
dummy values. Then, the second judgment in the assumption of Letrec updates
the dummy values with these evaluated values. The function update(∆, [vi]i, [wi]i)
returns the new environment ∆′ by updating the values that are stored at the
positions where each vi is located with wi.

In the figure, MatchAll and Matcher show the definition of evaluation of
matcher and matchAll expressions, respectively. Evaluation results of expressions
are specified by the judgment Γ, e ↓ v⃗, which denotes given a variable assignment
Γ and an expression e one gets a list of values v⃗. The definition of matchAll relies
on another type of the judgment ⃗⃗s ⇛ Γ⃗, which defines how the search space is
examined.

The rules that start with MS- in the second part of Figure 2.5 show the
definition of the judgment ⃗⃗s ⇛ Γ⃗. The judgment ⃗⃗s ⇛ Γ⃗ takes a list of lists of
matching states and returns pattern-match results. We handle a list of lists of
matching states for traversing a search tree in breadth-first order as explained in
Section 2.4.2. This list of lists of matching states represents the list of nodes at the
same depth level in the binary reduction tree in Figure 2.3. For example, ⃗⃗s is [[a1]]
at the first depth level, [[b2, c3, d4, · · · ]] at the second level, and [[e3], [c3, d4, · · · ]]
at the third depth level in the binary reduction tree in Figure 2.3. MS-Bfs-
Nil and MS-Bfs-Cons define this breadth-first search. In MS-Bfs-Cons, ⇛ is

inductively defined using ⃗⃗s⇒ Γ⃗,
⃗⃗
s′, which is defined by MS-Step. The judgment

⃗⃗s ⇒ Γ⃗,
⃗⃗
s′ takes a list of lists of matching states in the same depth level and

returns the list of nodes in the next depth level. Γ⃗ represents the pattern-match

results, and
⃗⃗
s′ represents the list of nodes in the next depth level. For example,

in the binary reduction tree in Figure 2.3, when ⃗⃗s is [[e3], [c3, d4, · · · ]], Γ and
⃗⃗
s′

are ∅ and [[f4], [g4], [d4, · · · ]], respectively. MS-Fail, MS-Success, and MS-
Top-MAtom define the evaluation of the judgment s⃗ → optΓ, opt s⃗′, opt s⃗′′.
In these rules, we introduce notations for (meta-level) option types. none and
somex are the constructors of the option type, and optx is a metavariable for an
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optional value (possibly) containing what the metavariable x denotes.
∑

i(optxi)
creates a list by collecting all the valid (non-none) xi preserving the order. In
the judgment s⃗ → optΓ, opt s⃗′, opt s⃗′′, optΓ represents a pattern-match result,
opt s⃗′ represents next matching states, and opt s⃗′′ represents the rest of matching
states. This judgment takes a list of matching states (a node of the binary
reduction tree) and returns the next matching states. MS-Fail defines that
pattern matching fails when the next matching states of the previous matching
state is empty. MS-Success defines that pattern matching succeeds when the
stack of matching atoms becomes empty. MS-Top-MAtom expands the top
matching atom of the first matching state by the method defined in the matcher
of the top matching atom.

The rules that start with MA- in the third part of Figure 2.5 show the defi-
nition of evaluation of a matching atom. The judgment p ∼Γ

m v ↓ ⃗⃗a,∆ is a 6-ary
relation. One reads this judgment “performing pattern matching on v against p
using the matcher m under the variable assignment Γ yields the next matching
atoms ⃗⃗a and the variable assignment ∆.” ⃗⃗a being empty means the pattern match-
ing failed. If [ϵ] is returned as ⃗⃗a, it means the pattern matching succeeded and no
further search is necessary. These rules define the matching function explained in
Section 2.4.1. MA-Something-WC and MA-Something-PatVar define the
pattern-match method for the only built-in matcher something. The something

matcher can handle only a wildcard or a pattern variable and always succeeds in
pattern matching. When the pattern is a pattern variable, a new assignment is
added. MA-PP-Fail, MA-DP-Fail, MA-Step handle a user-defined matcher.
As explained in Section 2.5, one needs to pattern-match patterns and data to
define user-defined matchers. Their formal definitions are given by judgments
pp ≈Γ p ↓ p⃗′,∆ and dp ≈ v ↓ Γ that are defined in the fourth part and the last
part of Figure 2.5. MA-PP-Fail defines that we try the next matcher clauses
when pattern matching for primitive-pattern pattern fails. MA-DP-Fail defines
that we try the next primitive-data-match clauses when pattern matching for
primitive-data pattern fails. MA-Step defines that we get the next matching
atoms by executing the body of the primitive-data match clause where pattern
matching for the primitive-pattern pattern and the primitive-data pattern suc-
ceeds.

The rules that start with PPP- in the fourth part of Figure 2.5 show the def-
inition of pattern matching for primitive-pattern patterns. One reads the judg-
ment pp ≈Γ p ↓ p⃗′,∆ “performing pattern matching on the pattern p against the
primitive-pattern pattern pp under the environment Γ yields the next patterns
p⃗′ and the variable assignment ∆”. PPP-WC, PPP-PatHole, PPP-ValPat,
and PPP-Constructor define primitive-pattern-match for a wildcard, a pat-
tern hole, a primitive value pattern, a constructor pattern, respectively.

The rules that start with PDP- in the last part of Figure 2.5 show the defi-
nition of pattern matching for primitive-data patterns. One reads the judgment
dp ≈ v ↓ Γ “performing pattern matching on v against the primitive-data pattern
dp yields the variable assignment Γ”. PDP-PatVar and PDP-Constructor
define primitive-data-match for a pattern variable and a constructor pattern,
respectively.

2.7 Related Work

When pattern matching first appeared, pattern matching could only be applied to
the specific types of algebraic data types [24]. Huge efforts have been conducted
to remove this limitation [48, 25]. As a result, state-of-the-art work allows us
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pattern matching for non-free data types. This section reviews this evolution by
seeing what happened in each decade.

2.7.1 1980s: Spread of Pattern Matching and Invention of Views

From this decade, functional languages with user-defined algebraic data types
and pattern matching for them became common. Miranda by Turner [90] and
Haskell [48] were the most popular among these languages, and the first pattern-
match extensions for widening the target of pattern matching beyond algebraic
data types were designed on them.

Miranda’s laws [84, 85] and Wadler’s views [92, 65] are earlier such research.
They discarded the assumption that one-to-one correspondence should exist be-
tween patterns and data constructors. They enable pattern matching for data
types whose data have multiple representation forms. For example, Wadler’s
paper on views [92] presents pattern matching for complex numbers that have
two different representation forms: Cartesian and polar. However, their expres-
siveness is not enough for representing patterns for non-free data types. They
support neither non-linear patterns nor pattern matching with multiple results.
Views are supported as a GHC extension in Haskell [5]. Views are implemented
also in Racket [86].

At the same time, more expressive pattern matching is explored by Quein-
nec [70], who proposed expressive pattern matching for lists. Though this pro-
posal is specialized to lists and not extensible, the proposed language supports
the cons and the join patterns, non-linear pattern matching with backtracking,
matchAll, not-patterns, and recursive patterns. His proposal achieves almost per-
fect expressiveness for patterns of lists and allows the pattern-match-oriented
definition of the basic list processing functions. For example, the following member

definition is presented in Queinnec’s paper [70].

member ?x (??- ?x ??-) -> true

member ?x ?- -> false

In Queinnec’s language, we represent a wildcard by -. Pattern variables are
prepended by ? or ??. A pattern variable that starts with ?? appears only in a
list pattern. This pattern variable matches a part of the target list.

2.7.2 1990s and 2000s: Exploration for Expressive Patterns

Following the pattern-match extensions in the previous decade, several new pattern-
match extensions for extending the target range of pattern matching have been
proposed by several researchers. We review these proposals in this section.

Erwig’s active patterns [39, 80] are an attempt to extend the expressiveness of
patterns beyond Wadler’s views. Active patterns also allow users to customize the
pattern-matching algorithm for each pattern. An example of pattern matching
against graphs using matching function is also shown in [40]. Add' in the following
program is a pattern constructor of active patterns. Add' extracts an element that
is identical with the first argument of Add' from the target collection.

pat Add' (x,_) = Add (y,s) => if x == y then Add (y,s) else let Add' (x,t) = s in

Add (x, Add (y, t)) end

Using the above Add', we can define the member function hiding the recursion as
follows.

fun member x (Add' (x,s)) = true

| member x s = false
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However, the expressiveness of active patterns is still limited. Active patterns
do not support pattern matching with multiple results: Add' can take only a value
and cannot take a pattern variable as its first argument. Non-linear patterns
exhibit their full ability when they are combined with pattern matching with
backtracking.

Tullsen’s first-class patterns [89] are another extension of views. First-class
patterns support pattern matching with multiple results. In first-class patterns,
we can define pattern constructors that have multiple decompositions. However,
the expressiveness of first-class patterns is still limited because it does not sup-
port non-linear patterns. Non-linear pattern matching is a necessary feature for
describing useful patterns for non-free data types.

2.7.3 2010s: Toward a Unified Theory of Pattern-Match-Oriented
Programming

In this decade, a unified theory for practical pattern matching for non-free data
types has been pursued. Egison proposed in this thesis is such research. The
research listed and organized the properties for practical pattern matching for
non-free data types. We proposed three criteria. The criteria are as follows:
(1) Efficiency of the backtracking algorithm for non-linear patterns; (2) Ad-hoc
polymorphism of patterns; (3) Extensibility of pattern matching.

2.8 Conclusion

We designed a user-customizable efficient non-linear pattern-matching system by
regarding pattern matching as reduction of matching states that have a stack
of matching atoms and intermediate results of pattern matching. This system
enables us to concisely describe a wide range of programs, especially when non-
free data types are involved. For example, our pattern matching architecture is
useful to implement a computer algebra system because it enables us to directly
pattern-match mathematical expressions and rewrite them.

The major significance of our pattern matching system is that it greatly im-
proves the expressivity of the programming language by allowing programmers
to freely extend the process of pattern matching by themselves. Although we
consider that the current syntax of matcher definition is already clean enough,
we leave further refinement of the syntax of our surface language as future work.

We believe the direct and concise representation of algorithms enables us to
implement really new things that go beyond what was considered practical before.
We hope our work will lead to breakthroughs in various fields. ,
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Chapter 3

Pattern-Matching-Oriented Programming

Style

3.1 Overview

Throughout the history of functional programming, recursion has emerged as a
natural method for describing loops in programs. However, there does often exist
a substantial cognitive distance between the recursive definition and the simplest
explanation of an algorithm even for the basic list processing functions such as
map, concat, or unique; when we explain these functions, we seldom use recursion
explicitly as we do in functional programming. For example, map is often explained
as follows: the map function takes a function and a list and returns a list of the
results of applying the function to all the elements of the list.

In this chapter, we advocate a new programming paradigm called pattern-
match-oriented programming for filling this gap. An essential ingredient of our
method is utilizing pattern matching for non-free data types. Pattern matching
for non-free data types features non-linear pattern matching with backtracking
and extensibility of pattern-matching algorithms. Several non-standard pattern
constructs, such as not-patterns, loop patterns, and sequential patterns, are de-
rived from this pattern-matching facility. Based on that result, we introduce
many programming techniques that replace explicit recursions with an intuitive
pattern by confining recursions inside patterns. We classify these techniques as
pattern-match-oriented programming design patterns.

These programming techniques allow us to redefine not only the most basic
functions for list processing such as map, concat, or unique more elegantly than the
traditional functional programming style, but also more practical mathematical
algorithms and software such as a SAT solver, computer algebra system, and
database query language that we had not been able to implement concisely.

This chapter is organized as follows. Section 3.2 introduces Egison and vari-
ous pattern constructs for non-free data types. These pattern constructs increase
the number of situations in which we can replace verbose recursions with more in-
tuitive patterns. Section 3.3 catalogs pattern-match-oriented programming tech-
niques utilizing the features introduced in Section 3.2. Section 3.4 explores the
effect of pattern-match-oriented programming in more practical situations. Sec-
tion 3.5 reviews the related work. Finally, Section 3.6 concludes this chapter.

3.2 Quick Tour of the Egison Pattern-Match-Oriented Language

This section quickly introduces the pattern-matching facility of Egison.
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3.2.1 Value Patterns and Predicate Patterns for Representing Non-
linear Patterns

matchAll gets even more powerful when combined with non-linear patterns. For
example, the following non-linear pattern matches when the target collection
contains a pair of identical elements.

matchAll [1, 2, 3, 2, 4, 3] as list integer with

| _ ++ $x :: _ ++ #x :: _ -> x

-- [2, 3]

Value patterns play an important role in representing non-linear patterns.
A value pattern matches the target if the target is equal to the content of the
value pattern. A value pattern is prepended with # and the expression after # is
evaluated referring to the value bound to the pattern variables that appear on
the left side of the patterns. As a result, for example, $x :: #x :: _ is valid, but
#x :: $x :: _ is invalid.

The variables inside a value pattern refer to a value bound outside the pattern-
match expression when the corresponding pattern variables do not appear on the
left-side of a pattern. For example, the value pattern #x refers to the value bound
by the first argument of delete in the following sample.

def delete x xs :=

match xs as list eq with

| $hs ++ #x :: $ts -> hs ++ ts

| _ -> xs

delete 2 [1, 2, 3, 4]

-- [1, 3, 4]

Let us show pattern matching for twin primes as a sample of non-linear pat-
terns. Twin primes are pairs of prime numbers whose forms are (p, p+2). primes

is an infinite list of prime numbers. This matchAll extracts all twin primes from
this infinite list of prime numbers in order.

def twinPrimes := matchAll primes as list integer with

| _ ++ $p :: #(p + 2) :: _ -> (p, p + 2)

take 8 twinPrimes

-- [(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73)]

There are cases that we might want to use more general predicates in patterns
than equality. Predicate patterns are provided for such a purpose. A predicate
pattern matches the target if the predicate returns true for the target. A predicate
pattern is prepended with ?, and a predicate of one argument follows after ?.

def twinPrimes := matchAll primes as list integer with

| _ ++ $p :: ?(\q -> q = p + 2) :: _ -> (p, p + 2)

3.2.2 Non-linear Pattern Matching with Backtracking

The pattern-matching algorithm inside Egison includes the backtracking mecha-
nism for efficient non-linear pattern matching.

matchAll [1..n] as list integer with _ ++ $x :: _ ++ #x :: _ -> x

-- returns [] in O(n^2) time

matchAll [1..n] as list integer with _ ++ $x :: _ ++ #x :: _ ++ #x :: _ -> x

-- returns [] in O(n^2) time
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The above expressions match a collection that consists of integers from 1 to
n as a list of integers for enumerating identical pairs and triples, respectively.
This target collection contains neither identical pairs nor triples. Therefore both
expressions return an empty collection.

When evaluating the second expression, Egison interpreter does not try pat-
tern matching for the second #x because pattern matching for the first #x always
fails. Therefore, the time complexities of the above expressions are identical. The
pattern-matching algorithm inside Egison is discussed in Section 2.4 in detail.

3.2.3 Ad-hoc Polymorphism of Patterns by Matchers

Another merit of matchers, in addition to the extensibility of pattern-matching
algorithms, is the ad-hoc polymorphism of patterns. The ad-hoc polymorphism
of patterns is important for non-free data types because some data are pattern-
matched as various non-free data types at the different parts of a program. For
example, a collection is pattern-matched as a list, a multiset, and a set. Poly-
morphic patterns reduce the number of names for pattern constructors.

In the following sample, a list [1,2,3] is pattern-matched using different
matchers with the same cons pattern. In the case of multisets, the cons pat-
tern decomposes a collection into an element and the rest elements ignoring the
order of the elements. In the case of sets, the rest elements are the same as
the original collection because we ignore the redundant elements. If we regard
a set as a collection that contains infinitely many copies of each element, this
specification of the cons pattern for sets is natural.

matchAll [1,2,3] as list something with $x :: $xs -> (x,xs)

-- [(1,[2,3])]

matchAll [1,2,3] as multiset something with $x :: $xs -> (x,xs)

-- [(1,[2,3]),(2,[1,3]),(3,[1,2])]

matchAll [1,2,3] as set something with $x :: $xs -> (x,xs)

-- [(1,[1,2,3]),(2,[1,2,3]),(3,[1,2,3])]

Polymorphic patterns are useful especially for value patterns. As well as other
patterns, the behavior of value patterns is dependent on matchers. For example,
an equality [1,2,3] == [2,1,3] between collections is false if we regard them as lists
but true if we regard them as multisets. Still, thanks to ad-hoc polymorphism of
patterns, we can use the same syntax for both types. This dramatically improves
the readability of the program and makes programming with non-free data types
easy.

matchAll [1,2,3] as list integer with #[2,1,3] -> "Matched" -- []

matchAll [1,2,3] as multiset integer with #[2,1,3] -> "Matched" -- ["Matched"]

3.2.4 matchAllDFS for Controlling the Order of Pattern-Matching Pro-
cess

The matchAll expression is designed to enumerate all countably infinite pattern-
matching results. For this purpose, users sometimes need to care about the order
of pattern-matching results.

Let us start by showing a representative sample. The matchAll expression
below enumerates all pairs of natural numbers. We extract the first 8 elements
with the take function. matchAll traverses the reduction tree of pattern matching
in breadth-first search to traverse all the nodes (Section 5.2 of [38]). As a result,
the order of the pattern-matching results is as follows.
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take 8 (matchAll [1..] as set something with

| $x :: $y :: _ -> (x,y))

-- [(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(2,3),(3,2)]

The above order is preferable for traversing an infinitely large reduction tree.
However, sometimes, this order is not preferable (see Section 3.3.1.2 and Sec-
tion 3.3.4.1). matchAllDFS that traverses a reduction tree in depth-first order is
provided for this reason.

take 8 (matchAllDFS [1..] as set something with

| $x :: $y :: _ -> (x,y))

-- [(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8)]

3.2.5 Logical Pattern Constructs: And-Patterns, Or-Patterns, and
Not-Patterns

The situations where and-patterns and or-patterns are useful are similar to those
of the existing languages, whereas not-patterns become useful when they are
combined with non-linear pattern matching with backtracking.

We start by showing pattern matching for prime triples as an example of
and-patterns and or-patterns. A prime triple is a triple of primes whose form is
(p, p+2, p+6) or (p, p+4, p+6). The and-pattern is used as an as-pattern. The
or-pattern is used to match both of p+ 2 and p+ 4.

def primeTriples := matchAll primes as list integer with

| _ ++ $p :: ((#(p + 2) | #(p + 4)) & $m) :: #(p + 6) :: _

-> (p, m, p + 6)

take 6 primeTriples -- [(5,7,11),(7,11,13),(11,13,17),(13,17,19),(17,19,23)

,(37,41,43)]

A not-pattern matches a target if the pattern does not match the target, as
its name implies. A not-pattern is prepended with !, and a pattern follows after
!. The following matchAll enumerates sequential pairs of prime numbers that are
not twin primes.

take 10 (matchAll primes as list integer with

| _ ++ $p :: (!#(p + 2) & $q) :: _ -> (p, q))

-- [(2,3),(7,11),(13,17),(19,23),(23,29),(31,37),(37,41),(43,47),(47,53),(53,59)]

3.2.6 Loop Patterns for Representing Repetition

A loop pattern is a pattern construct for representing a pattern that repeats
multiple times. It is an extension of Kleene star operator of regular expressions
for general non-free data types [33].

Let us start by considering pattern matching for enumerating all combinations
of two elements from a target collection. It can be written using matchAll as
follows.

def comb2 xs := matchAll xs as list something with

| _ ++ $x_1 :: _ ++ $x_2 :: _ -> [x_1, x_2]

comb2 [1,2,3,4] -- [[1,2],[1,3],[2,3],[1,4],[2,4],[3,4]]

Egison allows users to append indices to a pattern variable as $x_1 and $x_2

in the above sample. They are called indexed variables and represent x1 and
x2 in mathematical expressions. The expression after _ must be evaluated to an
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integer and is called an index. We can append as many indices as we want like
x_i_j_k. When a value is bound to an indexed pattern variable $x_i, the system
initiates an abstract map consisting of key-value pairs if x is not bound to a map,
and bind it to x. If x is already bound to a map, a new key-value pair is added
to this map.

Now, we generalize comb2. The loop patterns can be used for that purpose.

def comb n xs := matchAll xs as list something with

| loop $i -- index variable

(1, n) -- index range

(_ ++ $x_i :: ...) -- repeat pattern

_ -- final pattern

-> map (\i -> x_i) [1..n]

comb 2 [1,2,3,4] -- [[1,2],[1,3],[2,3],[1,4],[2,4],[3,4]]

comb 3 [1,2,3,4] -- [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]

The loop pattern takes an index variable, index range, repeat pattern, and final
pattern as arguments. An index variable is a variable to hold the current repeat
count. An index range specifies the range where the index variable moves. An
index range is a tuple of an initial number and final number. A repeat pattern
is a pattern repeated when the index variable is in the index range. A final
pattern is a pattern expanded when the index variable gets out of the index
range. Inside loop patterns, we can use the ellipsis pattern (...). The repeat
pattern or the final pattern is expanded at the location of the ellipsis pattern.
The repeat pattern is expanded replacing the ellipsis pattern incrementing the
value of the index variable. For example, when n = 3, the above loop pattern is
expanded as follows.

loop $i (1, 3) (_ ++ $x_i :: ...) _ -->

_ ++ $x_1 :: (loop $i (2, 3) (_ ++ $x_i :: ...) _) -->

_ ++ $x_1 :: _ ++ $x_2 :: (loop $i (3, 3) (_ ++ $x_i :: ...) _) -->

_ ++ $x_1 :: _ ++ $x_2 :: _ ++ $x_3 :: (loop $i (4, 3) (_ ++ $x_i :: ...) _) -->

_ ++ $x_1 :: _ ++ $x_2 :: _ ++ $x_3 :: _

The repeat counts of the loop patterns in the above samples are constants.
However, we can also write a loop pattern whose repeat count varies depending
on the target by specifying a pattern instead of an integer as the final number.
When the final number is a pattern, the ellipsis pattern is replaced with both
the repeat pattern and the final pattern, and the repeat count when the ellipsis
pattern is replaced with the final pattern is pattern-matched with that pattern.
The following loop pattern enumerates all initial prefixes of the target collection.

matchAll [1,2,3,4] as list something with

| loop $i (1, $n) ($x_i :: ...) _ -> map (\i -> x_i) [1..n]

-- [[],[1],[1,2],[1,2,3],[1,2,3,4]]

Loop patterns are heavily used especially for trees and graphs. We work on
pattern matching for trees in Section 3.3.4.1. More formal specification of syntax
and semantics of loop patterns is shown in the author’s previous paper [33].

3.2.7 Sequential Patterns for Controlling the Order of Pattern-Matching
Process

The pattern-matching system of Egison processes patterns from left to right in
order. However, there are cases where we want to change this order, for example,
to refer to the value bound to the right side of a pattern. Sequential patterns are
provided for such a purpose.
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Sequential patterns allow users to control the order of the pattern-matching
process. A sequential pattern is represented as a list of patterns. Pattern match-
ing is executed for each pattern in order. In the following sample, the target list
is pattern-matched from the third, first, and the second element in order.

matchAll [2,3,1,4,5] as list integer with

| { @ :: @ :: $x :: _,

(#(x + 1), @ ),

#(x + 2)}

-> "Matched" -- ["Matched"]

@ that appears in a sequential pattern is called later pattern variable. The target
data bound to later pattern variables are pattern-matched in the next sequence.
When multiple later pattern variables appear, they are pattern-matched as a
tuple in the next sequence. It allows us to apply not-patterns for different parts
of a pattern at the same time as we will see in Section 3.3.3.

Some readers might wonder that a sequential pattern can be transformed into
a nested matchAll expression. There are at least two reasons why it is impossible.
First, a nested matchAll expression breaks breadth-first search strategy: the inner
matchAll for the second result of the outer matchAll is executed only after the inner
matchAll for the first result of the outer matchAll is finished. Second, a later pattern
variable retains the information of not only a target but also a matcher. There
are cases that the matcher of matchAll is a parameter passed as an argument of a
function, and a pattern is polymorphic. Therefore, it is impossible to determine
the matchers of inner matchAll expressions syntactically.

3.2.8 Matcher Compositions

Matchers are composable. We can define matchers for such as tuples of multisets
and multisets of multisets. Using this feature, we can define matchers for various
data types.

First, we can define a matcher for tuples by a tuple of matchers. A tuple
pattern is used for pattern matching using such a matcher. For example, we can
define the intersect function using a matcher for tuples of two multisets. We
work on pattern matching for tuples of collections more in Section 3.3.3.

def intersect xs ys := matchAll (xs,ys) as (set eq, set eq) with

| ($x :: _, #x :: _) -> x

eq is a user-defined matcher for data types for which equality is defined. When
the eq matcher is used, equality is checked for a value pattern.∗

By passing a tuple matcher to a function that takes and returns a matcher,
we can define a matcher for various non-free data types. For example, we can
define a matcher for a graph as a set of edges. In the following code, we assume
a node id is represented by an integer.

def graph := multiset (integer, integer)

A matcher for adjacency graphs also can be defined. An adjacency graph is
defined as a multiset of tuples of an integer and a multiset of integers.

def adjacencyGraph := multiset (integer, multiset integer)

Some readers might wonder about matchers for algebraic data types. Egi-
son provides a special syntactic construct for defining a matcher for an alge-
braic data type. For example, a matcher for binary trees can be defined using
algebraicDataMatcher.

∗A definition of the eq matcher is explained in Section 6.3 of [38].
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def binaryTree a := algebraicDataMatcher

| bLeaf a

| bNode a (binaryTree a) (binaryTree a)

Matchers for algebraic data types and matchers for non-free data types also
can be combined. For example, we can define a matcher for trees whose nodes
have an arbitrary number of children whose order is ignorable. We show pattern
matching for these trees in Section 3.3.4.1.

def tree a := algebraicDataMatcher

| leaf a

| node a (multiset (tree a))

3.3 Pattern-Match-Oriented Programming Design Patterns

This section introduces basic pattern-match-oriented programming techniques
that replace explicit recursions with intuitive patterns. In the first part of this
section, we rewrite many list processing functions such as map, filter, elem, delete
, any, every, unique, concat, and difference, for which we expect most functional
programmers imagine the same definitions. In the latter part of this section, we
move our focus to descriptions of more mathematical algorithms that are not
well supported in the current functional programming languages. We proceed
with this section by listing patterns that frequently appear showing situations in
which they are useful. The following table shows this list.

Name Description Explained and Used in

Join-cons pattern for list Enumerate combinations of elements. 3.3.1

Cons pattern for multiset Enumerate permutations of elements.
3.3.2, 3.3.3, 3.3.4,
3.4.1, 3.4.3, 3.4.4

Tuple pattern for collections Compare multiple collections. 3.3.3, 3.3.4, 3.4.1, 3.4.4

Loop pattern Describe repetitions inside patterns. 3.3.4

3.3.1 Join-Cons Patterns for Lists — List Basic Functions

Join patterns whose second argument is a cons pattern, such as _ ++ $x :: _, are
frequently used for lists. We call these patterns join-cons patterns. Many basic
list processing functions can be redefined by simply using this pattern.

3.3.1.1 Single Join-Cons Patterns — The map Function and Its Family

_ ++ $x :: _ matches each element of the target collection when the list matcher
is used. As a result, the matchAll expression below matches each element of xs, and
returns the results of applying f to each of them. As discussed in Introduction,
this map definition is very close to our natural explanation of map.

def map f xs := matchAll xs as list something with

| _ ++ $x :: _ -> f x

By modifying the above matchAll expression, we can define several functions.
For example, we can define filter by inserting a predicate pattern.

def filter pred xs := matchAll xs as list something with

| _ ++ (and ?pred $x) :: _ -> x
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We can define elem by using a value pattern. elem is a predicate that determines
whether the first argument element appears in the second argument list or not.
match is provided also in Egison. match is just an alias of head (matchAll ...)

because Egison evaluates matchAll lazily.∗

def elem x xs := match xs as list eq with

| _ ++ #x :: _ -> True

| _ -> False

We can define delete that removes the first appearance of x from xs by modifying
elem.

def delete x xs := match xs as list eq with

| $hs ++ #x :: $ts -> hs ++ ts

| _ -> xs

The predicate any and every [76] also can be concisely defined with predicate
patterns using match. any is a predicate that determines whether any element of
the second argument list satisfies the first argument predicate. every is a predicate
that determines whether all elements of the second argument list satisfy the first
argument predicate.

def any pred xs := match xs as list something with

| _ ++ ?pred :: _ -> True

| _ -> False

def every pred xs := match xs as list something with

| _ ++ !?pred :: _ -> False

| _ -> True

3.3.1.2 Nested Join-Cons Patterns — The unique and concat Function

By combining multiple join-cons patterns, we can describe more expressive pat-
terns. One example is the unique function. The unique function is defined in the
pattern-match-oriented style as follows.

def unique xs := matchAllDFS xs as list eq with

| _ ++ $x :: !(_ ++ #x :: _) -> x

A not-pattern is used to describe that there is no more x after an occurrence of
x. Therefore, this pattern extracts only the last appearance of each element.

unique [1,2,3,2,4] -- [1,3,2,4]

We can define unique whose results consist of the first appearance of each
element by rewriting the above pattern using a predicate pattern with the elem

predicate. To match only the first appearance of an element, we rewrite a
pattern that ensures that the same element does not appear before that element.
We cannot write such a pattern with a simple combination of the cons and join
patterns because they match a target list from left to right.

def unique xs := matchAllDFS xs as list eq with

| $hs ++ (!?(\x -> member x hs) & $x) :: _ -> x

unique [1,2,3,2,4] -- [1,2,3,4]

Another more elegant solution is using a sequential pattern. We can describe
the same pattern by using the sequential pattern for the first argument of join.

∗matchAll also can handle multiple match clauses. matchAll t as m with c1 c2 ... is equiv-
alent to matchAll t as m with c1 ++ matchAll t as m with c2 ++ ....
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def unique xs := matchAllDFS xs as list eq with

| {@ ++ $x :: _,

!(_ ++ #x :: _)}

-> x

Another example of a nested join-cons pattern is concat. We can define concat

in the pattern-match-oriented style by combining a nested join-cons pattern and
matcher composition. Note that matchAllDFS is necessary for ordering the output
list properly.

def concat xss := matchAllDFS xss as list (list something) with

| _ ++ (_ ++ $x :: _) :: _ -> x

If we used matchAll instead of matchAllDFS for concat, it enumerates the elements
of the input list of lists alternately.

matchAll [[1..], (map negate [1..])] as list (list something) with

| _ ++ (_ ++ $x :: _) :: _ -> x

-- [1, 2, -1, 3, -2, 4, -3, 5, -4, 6]

3.3.2 Cons Patterns for Multisets

Cons patterns for a multiset are useful when we want to treat a collection ignoring
the order of elements. We often meet such a situation, especially when describing
mathematical algorithms.

We start from a simple example. The lookup function for association lists can
be defined using a single cons pattern for multiset. A single cons pattern for a
multiset can be replaced by a join-cons pattern for a list.

def lookup k ls := match ls as multiset (eq, something) with

| (#k, $x) :: _ -> x

The usage of cons patterns for multisets differs from that of join-cons patterns
when they are nested. Cons patterns for multisets can be used to enumerate
P (n, k) = n!

(n−k)! permutations of k elements, whereas join-cons patterns can be

used to enumerate C(n, k) = n!
k!(n−k)! combinations of k elements.

matchAll [1,2,3] as list integer with

| _ ++ $x :: _ ++ $y :: _ -> (x,y)

-- [[1,2],[1,3],[2,3]]

matchAll [1,2,3] as multiset integer with

| $x :: $y :: _ -> (x,y)

-- [(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]

The descriptions of algorithms for which nested cons patterns for multisets are
suitable become complicated in the traditional functional style. We can see that
by just comparing the descriptions of the above two matchAll in functional pro-
gramming.

However, pattern matching for multisets often appears in mathematical algo-
rithms. Besides that, a much wider variety of patterns exist for multisets than
lists. As a result, functions that correspond to patterns for multisets are not
implemented as library functions because naming all these patterns is not practi-
cal. In functional programming so far, they are defined as a recursive function or
combining several functions by users each time. It makes functional descriptions
of mathematical algorithms complicated.

Thus, descriptions of these mathematical algorithms are the area where pattern-
match-oriented programming demonstrates its full power. The rest of this chapter
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discusses how we can describe this wide variety of patterns for multisets by just
combining pattern constructs introduced in Section 3.2.

3.3.3 Tuple Patterns with Sequential Not-Patterns for Comparing
Collections

When describing algorithms, we often meet a situation to compare multiple data.
A tuple pattern combined with not-patterns is especially useful for this purpose.
For example, we can define difference by inserting a not-pattern into the definition
of intersect in Section 3.2.8.

def difference xs ys := matchAll (xs, ys) as (set eq, set eq) with

| ($x :: _, !(#x :: _)) -> x

By changing the position of the not-pattern as !($x :: _, #x :: _), we can also
describe a pattern that matches when no common element exists between the
two collections.

We can write more complicated patterns by combining these patterns with
a sequential pattern that allows us to apply a not-pattern to separate parts of
the pattern simultaneously. For example, a pattern that matches when only
one common element exists between the two collections is described below. A
sequential pattern enables us to describe the pattern-matching process that first
extracts one common element from the two collections, and after that checks
that no common element exists between the remainder of the two collections.
Sequential not-patterns often appear in mathematical algorithms, and we show
an example again in Section 3.4.1.

def singleCommonElem := match (xs, ys) as (multiset eq, multiset eq) with

| [($x :: @, #x :: @),

!($y :: _, #y :: _)] -> True

| _ -> False

We can combine a sequential pattern also with a loop pattern. For exam-
ple, we can write a pattern that matches the common prefix of two lists with a
sequential loop pattern.

match (xs, ys) as (list eq, list eq) with

| loop $i (1,$n)

[($x_i :: @, #x_i :: @), [...]]

!($y :: _, #y :: _)

-> map (\i -> x_i) [1..n]

3.3.4 Loop Patterns in Practice

Loop patterns are used for describing repetitions in a pattern. It is useful when
we construct a complicated pattern by combining simple pattern constructors
(Section 3.3.4.1) and when the number of pattern variables that appear in a
pattern changes by parameters (Section 3.3.4.2). In such situations, very com-
plicated recursion is necessary for describing algorithms. Loop patterns make
the descriptions of these algorithms intuitive by confining recursion in a pattern.
This section introduces such examples.

3.3.4.1 Pattern Matching for Trees

This section demonstrates loop patterns by showing pattern matching for trees.
The nodes of the trees in this section have an arbitrary number of children as
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XML, and they are handled as a multiset. A matcher for such a tree is defined
as tree in Section 3.2.8. We use this matcher in this section.

We describe patterns for a category tree of programming languages. treeData

defines the category tree. For example, "Egison" belongs to the "pattern-match-

oriented" category, and the "Dynamically typed" sub-category of the "Functional

programming" category.

def treeData :=

Node "Programming language"

[Node "pattern-match-oriented" [Leaf "Egison"],

Node "Functional language"

[Node "Strictly typed" [Leaf "OCaml", Leaf "Haskell", Leaf "Curry", Leaf "

Coq"],

Node "Dynamically typed" [Leaf "Egison", Leaf "Lisp", Leaf "Scheme", Leaf

"Racket"]],

Node "Logic programming" [Leaf "Prolog", Leaf "Curry"],

Node "Object oriented" [Leaf "C++", Leaf "Java", Leaf "Ruby", Leaf "Python",

Leaf "OCaml"]]

The matchAll expression below enumerates all categories to which a specified
language belongs. A loop pattern is used to describe a pattern for this purpose
because leaves can appear at an arbitrary depth. The ellipsis pattern in this loop
pattern is not placed in the tail of the repeat pattern. The ability to choose the
position of expansion of a repeat pattern allows us to apply the loop patterns to
trees.

def ancestors x t := matchAll t as tree string with

| loop $i (1,$n)

(node $c_i (... :: _))

(leaf #x)

-> map (\i -> c_i) [1..n]

ancestors "Egison" treeData

-- [["Programming language", "pattern-match-oriented"], ["Programming language",

"Functional language", "Dynamically typed"]]

It is also possible to enumerate all languages that belong to a specific sub-
category. We can use a doubly-nested loop pattern for this purpose because it
allows the sub-category to appear at an arbitrary depth. The following pattern
matches all the languages that belong to a specified category. We used matchAllDFS

for this enumeration to make the order of the languages in the result the same
as the order with which they appear in the tree.

def descendants x t := matchAllDFS t as tree string with

| loop _ (1,_)

(node _ (... :: _))

(node #x ((loop _ (1,_)

(node _ (... :: _))

(leaf $y)) :: _))

-> y

descendants "Functional language" treeData

-- ["OCaml", "Haskell", "Curry", "Coq", "Egison", "Lisp", "Scheme", "Racket"]

Egison is more elegant than XML path language [7] for handling trees because
we can describe the wide range of patterns by just combining a few simple pattern
constructors and the loop patterns. In XML path, we would instead have to use
the built-in ancestor command to enumerate all ancestors of a node, for example.
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3.3.4.2 N-Queen Problem

This section introduces a more tricky example of nested loop patterns by in-
troducing an n-queen solver in Egison. The n-queen problem is the problem of
placing n chess queens on an n× n board such that no queen can attack any of
the other queens. In chess, a queen can attack other chess pieces on the same
row, column, and diagonal.

Let us start by showing a program for solving the four queen problem. In this
program, we represent the positions of the four queens with a list. The number
of the n-th element represents the row number of the queen of the n-th line. The
solution must be a rearrangement of the list [1,2,3,4] because no two queens can
be in the same line or row. Therefore, we pattern-match a collection [1,2,3,4] as
a multiset of integers. The requirement that all two queens must not share the
same diagonal is represented with conditions a1±1 ̸= a2, a1±2 ̸= a3, a2±1 ̸= a3,
a1 ± 3 ̸= a4, a2 ± 2 ̸= a4, and a3 ± 1 ̸= a4.

matchAll [1,2,3,4] as multiset integer with

$a_1 ::

(!#(a_1 - 1) & !#(a_1 + 1) & $a_2) ::

(!#(a_1 - 2) & !#(a_1 + 2) & !#(a_2 - 1) & !#(a_2 + 1) & $a_3) ::

(!#(a_1 - 3) & !#(a_1 + 3) & !#(a_2 - 2) & !#(a_2 + 2) & !#(a_3 - 1) & !#(

a_3 + 1) & $a_4) ::

[] -> [a_1,a_2,a_3,a_4]

-- [[2,4,1,3],[3,1,4,2]]

We can use a doubly-nested loop pattern for generalizing this pattern for
the n-queen solver. The index pattern variable i of the outer loop is referred
to in the index range of the inner loop pattern for describing the difference of
the repeat count of inner loop patterns. Also note that the values bound in
the previously repeated pattern are referred as a_j in #(a_j - (i - j)) and #(

a_j + (i - j)). Non-linearity of indexed pattern variables is effectively used for
representing this pattern.

def nQueens n :=

matchAll [1..n] as multiset integer with

| $a_1 ::

(loop $i (2,n)

((loop $j (1, i - 1)

(!#(a_j - (i - j)) & !#(a_j + (i - j)) & ...)

$a_i) :: ...)

[] -> map (\i -> a_i) [1..n]

nQueens 4 -- [[2,4,1,3],[3,1,4,2]]

3.4 Pattern-Match-Oriented Programming in More Practical Sit-
uations

This section discusses how pattern-match-oriented programming changes the im-
plementation of more practical algorithms and software.

3.4.1 SAT Solver

To see the effect of pattern-match-oriented programming for implementing prac-
tical algorithms, we implement a SAT solver. A SAT solver determines whether
a given propositional logic formula has an assignment for which the formula eval-
uates to true. Input formulae for SAT solvers are often in conjunctive normal
form. A formula in conjunctive normal form is a conjunction of clauses, which
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are disjunctions of literals. A literal is a formula whose form is p or ¬p. For
example, (p ∨ q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r) is a formula in conjunctive normal form
that has a solution; p = False, q = True, and r = True.

3.4.1.1 The Davis-Putnam Algorithm

In our implementation, propositional logic formulae in conjunctive normal form
are represented as a collection of collections of literals. We can pattern-match
them as a multiset of multisets of literals because both ∧ and ∨ are commuta-
tive operators. Furthermore, we represent a literal as an integer. We represent
positive and negative literals as positive and negative integers respectively: for
example, p and ¬p are represented as 1 and −1, respectively. Therefore, the
matcher for these formulae can be defined by simply composing matchers as
multiset (multiset integer).

The program below shows the main part of our implementation of the Davis-
Putnam algorithm[46]. The dp function takes a list of propositional variables and
a logical formula, and returns True if there is a solution, otherwise returns False.

def dp vars cnf :=

match (vars, cnf) as (multiset integer, multiset (multiset integer)) with

| (_, []) -> True

| (_, [] :: _) -> False

-- 1-literal rule

| (_, ($l :: []) :: _) -> dp (delete (abs l) vars) (assignTrue l cnf)

-- pure literal rule (positive)

| ($v :: $vs, !((#(neg v) :: _) :: _)) -> dp vs (assignTrue v cnf)

-- pure literal rule (negative)

| ($v :: $vs, !((#v :: _) :: _)) -> dp vs (assignTrue (neg v) cnf)

-- otherwise

| ($v :: $vs, _) ->

dp vs

((resolveOn v cnf) ++ (deleteClausesWith v (deleteClausesWith (neg v) cnf)

))

The first match clause states that the input formula has a solution when it
is empty. The second match clause states that there is no solution when clauses
include an empty clause. The third match clause represents 1-literal rule. When
the input formula includes a clause with a single literal, we can assign that literal
True at once. The fourth match clause states that if there is a propositional
variable that appears only positively, we can set the value of this literal True

and remove the propositional variable from the variable list and the clauses that
include this literal from the formula. For example, (p ∨ q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r)
contains a propositional variable q only positively, so we can assign q True and
remove the first clause from the next recursion. The fifth match clause states
the opposite of the fourth match clause. It removes the clauses that include this
literal if there is a propositional variable that appears only negatively (p in the
above sample is such propositional variable). The final match clause applies the
resolution principle. The resolveOn function collects all pairs of clauses p∨C and
¬p∨D (let C and D be a disjunction of literals), and returns new clauses C ∨D.

The above definition of dp describes all rules of the Davis-Putnam algorithm by
fully utilizing pattern matching for multisets. In traditional functional languages,
we need to call several library functions and define several helper functions to
describe these conditional branches. We can compare this implementation with
the same algorithm implemented in OCaml in [46].
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3.4.1.2 Pattern Matching for Resolution

We can elegantly define the resolveOn function using a sequential not-pattern.
First, let us show a naive implementation of resolveOn. The resolveOn function

is defined with a single matchAll expression as follows.

def resolveOn v cnf := matchAll cnf as multiset (multiset integer) with

| (#v :: $xs) :: (#(negate v) :: $ys) :: _

-> unique (filter (\c -> not (tautology c)) (xs ++ ys))

The pattern for enumerating the pair of clauses p ∨ C and ¬p ∨ D is described
simply utilizing pattern-matching for a multiset of multisets. Note that the above
resolveOn removes tautological clauses by using the tautology predicate in the body
of the match clause.

We can remove this use of the tautology predicate by using a sequential not-
pattern discussed in Section 3.3.3. The sequential pattern is effectively used to
describe that the literal x appeared in xs does not appear negatively in ys.

def resolveOn v cnf :=

matchAll cnf as multiset (multiset integer) with

| {(#v :: (@ & $xs)) :: (#(neg v) :: (@ & $ys)) :: _,

!($l :: _, #(neg l) :: _)}

-> unique (xs ++ ys)

3.4.1.3 Separating Two Kinds of Loops

The SAT solver presented in this section is an important sample in the sense
that it is the only sample that contains a loop that we cannot remove by pattern-
match-oriented programming. This unremovable loop is the recursion of the dp

function. This recursion is essential for narrowing the search tree. This narrowing
is impossible by simple backtracking. On the other hand, all the other loops that
can be implemented in backtracking algorithms are pushed into the patterns.
In the traditional style, we usually describe the 1-literal rule and pure literal
rules by combining several recursive functions such as find, partition, subtract

and intersect [46]. Thus, pattern-match-oriented programming increases the
readability of practical algorithms.

3.4.2 Graph Pattern Matching

This section demonstrates pattern matching for graphs as sets of edges and ad-
jacency graphs, respectively.

3.4.2.1 Graphs as Sets of Edges

In this section, we pattern-match a graph as a set of edges. We can define a
matcher and graph data as follows.

def graph := set edge

def edge := algebraicDataMatcher

| edge integer integer

def graphData :=

[ Edge 1 2, Edge 2 1, Edge 2 3, Edge 2 4, Edge 3 4, Edge 4 5, Edge 4 6, Edge 4

7

, Edge 5 4, Edge 5 6, Edge 5 7, Edge 6 4, Edge 6 5, Edge 6 7, Edge 7 4, Edge 7

5

, Edge 7 6, Edge 7 8, Edge 9 10, Edge 10 7 ]
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Figure 3.1: Visualization of graphData.

This sample graph is visualized in Section 3.1. This section lists several
pattern-matching examples against this graph. Various patterns for graphs can
be described using techniques introduced in this Chapter.

A pattern for listing all nodes that are accessible from s in two edges is
described as follows.

let s := 1 in

matchAll graphData as graph with

| edge (#s & $x_1) $x_2 :: edge #x_2 $x_3 :: _

-> x

-- [1, 3, 4, 5, 6, 7]

A pattern for listing all nodes that possess an edge from s but not to s is
described utilizing a not-pattern effectively.

let s := 1 in

matchAll graphData as graph with

| edge #s $x :: !(edge #x #s :: _)

-> x

-- [4]

A pattern for listing all routes from s to e is defined with a loop pattern.
Egison allows users to use the let expression inside a pattern. The let expression
is used to bind s to $x_1. Thanks to this let, we can describe elegantly an initial
condition for $x_1 for the loop pattern.

let (s, e) := (1, 8) in

matchAll graphData as graph with

| let x_1 := s in

loop $i (2, $n)

(edge #x_(i - 1) $x_i :: ...)

(edge #x_(n - 1) (#e & $x_n) :: _)

-> map (\i -> x_i) [1..n]

-- [[1, 4, 7, 8], ...]

A pattern for finding all cliques whose size is n is given in the following way.
A double-nested loop pattern can be used for that purpose.

let n := 4 in

matchAll graphData2 as graph with

| edge $x_1 $x_2 :: loop $i (3, n)

(edge #x_1 $x_i :: loop $j (2, i - 1)

(edge #x_j #x_i :: ...)

...)

_

-> map (\i -> x_i) [1..n]

-- [[4, 5, 6, 7], ...]
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In this section, we demonstrated pattern matching only for a directed graph.
However, we can also define a matcher for undirected graphs using a matcher for
edges that identifies Edge a b and Edge b a. The matcher for undirected edges is
defined as a user-defined matcher, which we explained in Section 2.5.

3.4.2.2 Adjacency Graphs

This section demonstrates pattern matching for a weighted adjacency list. As
shown in the program below, a matcher for a weighted adjacency list can be
simply defined by composing matchers. graphData in the program below represents
an airline network by a weighted adjacency list. The integers in graphData are the
costs of time by hours to move between two cities.

def graph := multiset (string, multiset (string, integer))

def graphData :=

[("Berlin", [("New York", 14), ("London", 2), ("Tokyo", 14), ("Vancouver", 13)

]),

("New York", [("Berlin", 14), ("London", 12), ("Tokyo", 18), ("Vancouver", 6)

]),

("London", [("Berlin", 2), ("New York", 12), ("Tokyo", 15), ("Vancouver", 10)

]),

("Tokyo", [("Berlin", 14), ("New York", 18), ("London", 15), ("Vancouver", 12)

]),

("Vancouver", [("Berlin", 13), ("New York", 6), ("London", 10), ("Tokyo", 12)

])]

-- List all routes that visit all cities exactly once and return to Berlin.

def trips :=

let n := length graphData in

matchAll graphData as graph with

| (#"Berlin", (($s_1,$p_1) :: _)) ::

loop $i (2, n - 1)

((#s_(i - 1), ($s_i, $p_i) :: _) :: ...)

((#s_(n - 1), (#"Berlin" & $s_n, $p_n) :: _) :: [])

-> sum (map (\i -> p_i) [1..n]), map (\i -> s_i) [1..n]

head (sortBy (\(_, x), (_, y) -> compare x y)) trips)

-- (["London", "New York", "Vancouver", "Tokyo"," Berlin"], 46)

The above matchAll expression lists all routes from Berlin that visit all the cities
exactly once and return to Berlin. This pattern can be used to solve the traveling
salesman problem. A non-linear loop pattern is used to represent the pattern.

There are several graph database query languages [66, 72, 6]. The advantage
of Egison over these query languages is its generality. Egison does not focus
on pattern matching for graphs. Instead, Egison allows users to describe various
patterns by just combining non-linear loop patterns and a small number of simple
pattern constructors.

3.4.3 Computer Algebra

As an application of pattern-match-oriented programming, we have developed a
computer algebra system [31]. We can implement a pattern-matching engine for
mathematical expressions in a short program by defining a matcher for mathe-
matical expressions.

def mathExpr :=

matcher

| div $ $ as (mathExpr, mathExpr) with
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| Div $x $y -> [(x, y)]

| $tgt -> [(tgt, 1)]

| poly $ as multiset mathExpr with

| $tgt -> [tgt]

| term $ $ as (integer, multiset (mathExpr, integer)) with

| Term $c $xs -> [(c, xs)]

| App $ $ as (mathExpr, list mathExpr) with

| App $f $args -> [(f, args)]

| sym $ as string with

| Sym $name -> [name]

| $ as something with

| $tgt -> [tgt]

The matcher for mathematical expressions is used for implementing programs
for simplifying mathematical expressions. For example, a function that simplifies
a mathematical expression by reducing cos2(θ)+sin2(θ) to 1 can be implemented
as follows.

def simplifyCosAndSinInPoly poly :=

match poly as mathExpr with

poly (term $n ((app (sym #"cos") [$x]), 2) :: $y) :: term #n ((app (sym #"sin

") [#x], 2) :: #y) :: r) ->

simplifyCosAndSinInPoly (n * (prod (map power y)) + (sum r))

_ -> poly

The definition of a matcher for mathematical expressions is simple compared
with the pattern-matching engines of the other computer algebra systems. As a
result, the implementation of the whole computer algebra system is also compact
and straightforward; therefore, this computer algebra system is easily extensible.
This extensibility allows us to experiment with new features easily.

This extensibility is a significant advantage in the future of computer algebra
systems in the field of which there are still notations that are popular among
researchers of mathematics but cannot be used in programs. There are many
possibilities of research for extending computer algebra systems to support these
notations. The extensibility of computer algebra systems will help us advance
this research.

Such work has already been done by the author. We have developed a natural
method for importing tensor index notation into programming [32]. Thanks to
this work, Egison became an appropriate computer algebra system for describing
formulae of differential geometry. We will explain this feature in Chapter 5

3.4.4 Database Query Languages

Egison pattern matching can provide a unified query language for various kinds of
databases. For example, let us consider a database of social network services and
a query to list all users who are followed by the user whose name is "Egison_Lang"

but who do not follow this user. This query can be written with matchAll as
follows using Egison pattern matching. This query pattern-matches the tables of
a relational database as sets.

matchAll (users, follows, users) as (set user, set follow, set user) with

((name #"Egison_Lang") & (id $uid) :: _,

(fromID #uid) & (toID $fid) :: !((fromID #fid) & (toID #uid) :: _),

(ID #fid) & (Name $fname) :: _) -> (fid, fname)

The above matchAll expression matches a tuple of the user table (users), the follow
table (follows), and the user table. Each table is pattern-matched as a set. The
second line pattern-matches the user table. Name and ID are pattern constructors
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to access the column of a record. The pattern for the user table in the second
line matches the user whose name is "Egison_Lang" and $uid is bound to the user
ID of that user. The third line pattern-matches the follow table. FromID and ToID

are pattern constructors to match the IDs of follower and followee. The user
of FromID follows the user of ToID. IDs of the users who do not follow back the
user whose ID is uid is pattern-matched using a not-pattern. The fourth line
pattern-matches the user table again to get the name of the user whose ID is fid

and returns the tuple (fid, fname).
The conciseness of the queries is an important advantage of Egison over

SQL [26]. For example, the same query described in SQL is more complicated.
We need to write all conditions in WHERE clauses instead of a non-linear pattern
and a sub-query instead of a not-pattern. A query in the pattern-match-oriented
style can be interpreted by reading it once from left to right in order, whereas
one in SQL cannot.

SELECT DISTINCT ON (user.name) user.name

FROM user AS user1, follow AS follow1, user AS user2

WHERE user1.name = 'Egison_Lang' AND follow1.from_id = user1.id AND user2.id =

follow1.to_id

AND NOT EXISTS

(SELECT '' FROM follow AS follow2

WHERE follow2.from_id = follow1.to_id AND follow2.to_id = user1.id)

List comprehensions also work as a sophisticated query language for relational
databases [88]. The above query can be simply expressed also by list comprehen-
sions. The advantage of Egison to list comprehensions as a query language is its
generality. Egison can be used to express queries not only for relational databases
but also for XML and graph databases. XML path language [7] and graph query
languages [66, 72, 6] only focus on handling their target data structures and have
many built-in functions to handle various patterns. On the other hand, Egison
pattern-matching system allows users to describe various patterns for various
data types in a unified manner with a small number of pattern constructors.

3.5 Related Work

This section compares our approach with list comprehensions (Section 3.5.1)
and logic programming (Section 3.5.2) as other approaches to remove explicit
recursions from programs.

3.5.1 List Comprehensions

List comprehensions [67] are another approach to hide explicit recursions. For
example, list comprehensions also allow us to define map without explicit recursion:

map f xs = [ f x | x <- xs ]

However, list comprehensions are too specialized to enumerate elements of a list
and do not allow us to describe complex enumerations as concisely as pattern-
match-oriented programming. We can summarize the advantages of pattern-
match-oriented programming against list comprehensions as follows:

1. Pattern-match-oriented programming requires less local variables;

2. Pattern-match-oriented programming is more expressive thanks to ad-hoc
polymorphism of patterns and Egison specific pattern constructs such as
loop patterns and sequential pattern;
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3. Pattern matching can be used to describe conditional branches.

The second and third advantages are obvious. Therefore, in the rest of this
section, we focus on the first advantage.

For illustrating the first advantage, we write a program that enumerates all
the two combinations of elements in list comprehensions. We described the same
program in pattern-match-oriented programming style in Section 3.3.2. tails is
a function that returns all the suffixes of the argument list.

comb2 xs = [ (x,y) | x:ys <- tails xs, y <- ys ]

The variable ys is necessary for list comprehensions though it is unnecessary in
pattern-match-oriented programming. Such variables that are necessary only in
list comprehensions appear when the pattern is nested. As a result, nested join-
cons patterns for lists (e.g. unique in Section 3.3.1.2) and nested cons patterns
for multisets (e.g. an N-queen solver in Section 3.3.4.2 and a SAT solver in
Section 3.4.1) cannot be described in list comprehensions as concisely as pattern-
match-oriented programming.

3.5.2 Comparison with Logic Programming

Logic programming is a programming paradigm proposed with a similar motive
of simplifying the descriptions of backtracking. Logic programming describes
non-deterministic computations using unification instead of pattern matching.
Unification is a more general notion compared with pattern matching. But the
integration of non-determinism of logic programming and pattern matching is
not obvious. For example, the pattern-matching facility of Prolog is specialized
only for algebraic data types.

We can summarize the advantages of our approach against logic programming
as follows:

1. Our approach proposes syntax specialized for pattern matching of non-free
data types.

2. Our approach is compiler-friendly because our approach directly defines
methods for decomposing data.

3. Our approach modularizes non-free data types by matchers.

3.5.2.1 Special Syntax for Pattern Matching of Non-free Data Types

We can describe non-linear patterns and backtracking in functional logic pro-
gramming as we have shown in Section 2.2.1. However, logic programming lan-
guages do not provide a special syntactic construct for handling multiple pattern-
matching results as the matchAll expression of our language. As a result, programs
for non-free data types in logic programming are not as concise as ones in our
approach. Curry [45] provides findall for handling multiple unification results. If
we use findall for pattern matching, the program gets more complicated than the
functional approach. For example, Curry program that defines the map function
in the pattern-match-oriented style is as follows.

map f xs = findall (\y -> let x free in (_ ++ (x : _)) =:= xs & f x =:= y)

The findall function takes a predicate (a function that returns a boolean value)
and returns a list of values that satisfy the predicate. The predicate passed to
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findall in the above code returns true when both (_ ++ (x : _)) =:= xs and f x =:=

y return true. In Curry, & is a boolean operator and =:= represents an equational
constraint. We can represent pattern matching using equational constraints.
The equational constraint (_ ++ (x : _)) =:= xs binds the free variable x to an
element of xs. Then, the equational constraint f x =:= y binds the variable y to
f x. Finally, findall returns all the values bound to y. As a result, the above
findall returns a list of results applying f to each element of xs.

3.5.2.2 Compiler-Friendly Pattern Definitions

The key difference between logic programming and our approach is in the method
for defining pattern-match algorithms. Logic programming deduces the method
for decomposing data from a method for constructing data. For example, in
Curry, the cons pattern for multisets, whose name is insert in Curry, is defined
as follows (we demonstrated this pattern constructor in Section 2.2).

1 insert x [] = [x]

2 insert x (y:ys) = x:y:ys ? y:(insert x ys)

The insert function is a non-deterministic function that returns the result of
inserting the first argument to the second argument list. The infix operator ? is
called a non-deterministic operator. The ? operator returns its second argument
for example when the unification for the first argument fails. It is also possible
to enumerate all the results of a non-deterministic function by using findall

explained in Section 3.5.2.1. The first line defines how to insert x to the empty
list. The second line defines how to insert x to a non-empty list. The first
argument of the ? operator is x:y:ys that means x is inserted into the head of the
non-empty list. The second argument of the ? operator is y:(insert x ys). This
part uses recursion for inserting the element x into the tail part of the argument
list. insert x ys returns the non-deterministic results of inserting x to ys.

On the other hand, in our proposal, we define pattern constructors by de-
scribing how to decompose data directly. Thanks to that, in our approach, it
is easy to control and optimize the execution process of the internal pattern-
match process. For example, we can naturally define wildcard optimizations in
our approach (Section 2.5.2).

3.5.2.3 Abstraction of Non-free Data Types by Matchers

In our approach, we modularize pattern-match methods not for each pattern but
for each non-free data type using matchers. This abstraction of non-free data
types improves the readability of programs by ad-hoc polymorphism of patterns
as we explained in Section 2.3.3. Not only that, this abstraction also enables
us to apply more complex optimization like pattern fusion that is explained in
Section 2.5.3

3.6 Conclusion

In this chapter, we have presented programming techniques that replace explicit
recursions for traversing search trees with intuitive patterns and allow program-
mers to concentrate on the description of the essential parts of algorithms that
reduce the computational complexities of the algorithms. We listed many algo-
rithms that can be represented more elegantly in this way. These include many
very basic list processing functions to some larger more practical algorithms.
We believe the development of these programming techniques that enable the
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more intuitive representation of algorithms extends the limit on the complexity
of software that we can practically implement and has the potential to accelerate
research of computer science as a whole. We hope our work leads to the further
evolution of pattern matching and the future progress of data abstraction.
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Chapter 4

Embedding Egison Pattern Matching into

Haskell

In this chapter, we discuss methods for embedding Egison pattern matching into
Haskell. There are three technical challenges for that: (1) we need to design
typing rules for Egison pattern matching; (2) we need to convert Egison pattern-
match expressions to a Haskell program; (3) we need to make converted Haskell
programs type-inferable by GHC. In this chapter, we show our solution. We have
implemented our solution in the Haskell library, Sweet Egison. This library has
already been distributed via Hackage. Sweet Egison has three features that the
original Egison interpreter does not have: (1) type errors are detected statically
by the compiler; (2) execution speed is much faster; (3) the users can customize
search strategies for pattern matching.

4.1 Overview

4.1.1 Usage of Sweet Egison

We start from the explanation of the matchAll expression of Sweet Egison. The
matchAll expression collects all the pattern-match results and returns a list of the
results evaluating the body expression for each pattern-match result. A match
clause is constructed using the quasi-quote [81] provided by Template Haskell [75].
The mc quasi-quoter is defined in the proposed library to desugar a match clause.
The matchAll expression below pattern-matches the list [1, 2, 3] with the pattern
$x : $xs as a list, and returns the collection of the tuple (x, xs). Patterns that
start with $ ($x and $xs in this sample) are pattern variables. The evaluation result
of the matchAll expression contains only one element because the cons pattern for
a list has only one decomposition.

matchAll dfs [1, 2, 3] (List Something)

[[mc| $x : $xs -> (x, xs) |]]

-- [(1, [2, 3])]

The matchAll expression of Sweet Egison takes an additional argument as its
first argument. We specify a search strategy by the first argument. By default, we
can choose the depth-first and breadth-first search strategies. In Sweet Egison,
users can define search strategies by defining their own backtracking monads. It
is an important feature of Sweet Egison when compared to the original Egison
interpreter and Sweet Egison. We explain how to define backtracking monads in
Section 4.3.2.

take 10 (matchAll dfs [1..] (Set Something)

[[mc| $x : $y : _ -> (x, y) |]])
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-- [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1,

10)]

take 10 (matchAll bfs [1..] (Set Something)

[[mc| $x : $y : _ -> (x, y) |]])

-- [(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4,

1)]

The matchAll expression takes a list of match clauses and can handle multiple
match clauses. When there are multiple match clauses, matchAll concatenates the
results for each match clause. “matchAll t m [c1,c2,...]” is equivalent to “matchAll
t m [c1] ++ matchAll t m [c2] ++ ...”.

matchAll dfs [1, 2, 3] (List Something)

[[mc| $x : $xs -> (x, xs) |]

,[mc| _ : $x : $xs -> (x, xs) |]]

-- [(1, [2, 3]), (2, [3])]

Matchers, the third argument of matchAll, play an important role in achieving
ad-hoc polymorphism of patterns as the original Egison language. The matcher
of the program below is (Multiset Something). The cons pattern for a multiset is
defined to decompose a target list into an arbitrary element and the rest elements.
Therefore, the pattern-match results change as follows.

matchAll dfs [1, 2, 3] (Multiset Something)

[[mc| $x : $xs -> (x, xs) |]]

-- [(1, [2, 3]), (2, [1, 3]), (3, [1,2])]

The users can define matchers and pattern-match algorithms for each pattern of
each matcher. We call this feature customizability of pattern-match algorithms.
Achieving both customizability and ad-hoc polymorphism of patterns together
is the first main technical challenge for implementing this Haskell library. We
explain how to define matchers in Sweet Egison in Section 4.3.4.

Matching in Sweet Egison allows non-linear patterns as the original Egison
interpreter. The pattern that starts with # is a value pattern. An arbitrary
Haskell expression follows after #. A value pattern checks whether the target and
the content of the value pattern are equal or not. The Eql matcher is defined to
use == for checking the equality. The pattern below matches when there are pairs
of sequential elements. There are two sequential pairs: (1, 2) and (4, 5). Value
patterns can refer to the values bound to the pattern variables that appear on
the left-side of patterns. For example, the pattern #(x + 1) : $x : _ is invalid.
This restriction makes patterns readable from left to right in order and makes
the internal pattern-match algorithm simple.

matchAll dfs [1, 5, 2, 4] (Multiset Eql)

[[mc| $x : #(x + 1) : _ -> (x, x + 1) |]]

-- [(1, 2), (4, 5)]

The type of an expression inside a value pattern is inferable by the GHC type
checker. Maintaining non-linear patterns in a static type system of Haskell is also
a major technical challenge for implementing this Haskell library.

Sweet Egison also provides the match expression, which calculates only the first
pattern-match result. The match expression is simply implemented as follows.

match s t m cs = head (matchAll s t m cs)

To keep the code simple, we made use of head to implement match. On failure of
pattern-match, this raises an uninformative exception, but it can be processed
by an error handler.
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data Suit = Spade | Heart | Club | Diamond deriving (Eq)

data Card = Card Suit Integer

poker :: [Card] -> String

poker cs = match dfs cs (Multiset CardM)

[[mc| [card $s $n, card #s #(n-1), card #s #(n-2), card #s #(n-3), card #s #(n

-4)] -> "Straight flush" |],

[mc| [card _ $n, card _ #n, card _ #n, card _ #n, _] -> "Four of a kind" |],

[mc| [card _ $m, card _ #m, card _ #m, card _ $n, card _ #n] -> "Full house"

|],

[mc| [card $s _, card #s _, card #s _, card #s _, card #s _] -> "Flush" |],

[mc| [card _ $n, card _ #(n-1), card _ #(n-2), card _ #(n-3), card _ #(n-4)] ->

"Straight" |],

[mc| [card _ $n, card _ #n, card _ #n, _, _] -> "Three of a kind" |],

[mc| [card _ $m, card _ #m, card _ $n, card _ #n, _] -> "Two pair" |],

[mc| [card _ $n, card _ #n, _, _, _] -> "One pair" |],

[mc| _ -> "Nothing" |]]

Figure 4.1: Pattern matching for poker hand in Sweet Egison

We can use Sweet Egison for pattern matching of poker hand as shown in
Figure 4.1. We can represent each poker hand in a single pattern by pattern
matching a list of cards as a multiset. The CardM matcher is a matcher for playing
cards. “[p1, p2, ..., pn]” is syntactic sugar of a pattern whose form is “p1 : p2 :

... : pn : []”.
There are two features not implemented in Sweet Egison. First, some non-

standard pattern constructs, such as loop patterns, indexed pattern variables,
and sequential patterns, are not implemented in Sweet Egison. Loop patterns
and indexed pattern variables are used for representing the repetitions inside
a pattern (Section 3.2.6). Sequential patterns are used to control the order of
pattern matching (Section 3.2.7). Second, the users of Sweet Egison cannot define
pattern fusions. Sweet Egison cannot pattern-match patterns when defining a
matcher. This is because the users define each pattern as a function. We explain
this limitation in Section 4.3.6.

4.1.2 Compiling Method

Our key idea is to transform patterns into a program that uses backtracking
monads such as the standard list monad. For example, this matchAll expression

matchAll dfs [1, 2, 3] (Multiset Something) [[mc| $x : $xs -> (x, xs) |]]

-- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

is converted to the following Haskell program:

(\ (matcher, target) -> do

(x, xs) <- cons matcher target -- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

let (_, _) = consM matcher target -- (Something, Multiset Something)

return (x, xs))

(Multiset Something, [1, 2, 3]) -- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

The cons (the alias of :) and consM functions are user-defined functions that posses
the pattern-match method for the cons pattern. They are called next-target func-
tion and next-matcher function, respectively. The cons function takes a matcher
and a target and returns a list of results of decomposing the target. We need to
pass a matcher to next-target functions to make them polymorphic. For example,
the cons function for multisets returns all the pairs of an element and the rest of
the target list.
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cons (Multiset Something) [1, 2, 3]

-- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

The consM function defines how these decomposed data are pattern-matched in
the next step.

consM (Multiset Something) [1, 2, 3]

-- (Something, Multiset Something)

Each result of the cons function (e.g., 1 and [2, 3]) is pattern-matched as Something
and Multiset Something, respectively.

Next, we show the conversion of nested patterns. Patterns are transformed
in sequence in the same do expression, therefore we can refer to the values that
are bound to the pattern variables in the left side of a pattern. For example, the
following non-linear pattern matching

matchAll dfs [1, 2, 3, 4] (Multiset Eql)

[[mc| $x : #(x * 2) : _ -> (x, x * 2) |]]

-- [(1, 2), (2, 4)]

is converted as follows.

(\ (matcher, target) -> do

(x, target') <- cons matcher target

let (_, matcher') = consM matcher target

(target'', _) <- cons matcher' target'

let (matcher'', _) = consM matcher' target'

value (x * 2) matcher'' target''

return (x, y))

(Multiset Eql, [1, 2, 3, 4])

In the above program, value is a next-target function for handling value patterns.
The value function is user-defined like the cons function. Users can define how to
handle value patterns for each non-free data type.

4.1.3 Organization of This Chapter

The rest of this chapter is organized as follows. Section 4.2 proposes a set of typing
rules for matchAll, matchers, patterns, and match clauses. Section 4.3 explains
the implementation of Sweet Egison. Section 4.5 shows the benchmarking results.
Section 4.6 concludes the chapter.

4.2 Typing Rules

This section shows a set of typing rules that we designed for Typed Egison [54],
a variation of Egison with a static type system. As the original Egison is a
dynamically typed programming language, we need to devise typing rules for
Egison’s non-linear patterns with ad-hoc polymorphism.

Figure 4.2 shows the set of typing rules. In the rules, meta-variables x, e, p,
and C denotes a variable, expression, pattern, and pattern constructor, respec-
tively. We write T and S to denote types, Γ and ∆ to denote type environments
and ϵ to denote an empty type environment. We also write [T] to denote a type
of a list of elements of type T . Matcher and Pattern are built-in type construc-
tors: Matcher T is a type of a matcher for T ; Pattern T is a type of a pattern
for T .

The type judgement Γ ⊢ e : T states that e has the type T under the type
environment Γ. The other type judgment Γ;∆ ⊢ p : T ;∆′ states that the pattern
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A typing rule for matchAll

Γ ⊢ e1 : T1 Γ ⊢ e2 : Matcher T1

Γ; ϵ ⊢ p : Pattern T1;∆ Γ,∆ ⊢ e3 : T3

Γ ⊢ matchAll e1 as e2 with p -> e3 : [T3]
T-MatchAll

Typing rules for patterns

Γ;∆ ⊢ : Pattern T ;∆
TP-WC

Γ,∆ ⊢ e : T

Γ;∆ ⊢ #e : Pattern T ;∆
TP-Value

Γ;∆ ⊢ $x : Pattern T ;∆, (x : T )
TP-Var

Γ ⊢ C : (Pattern S1, · · · , Pattern Sn)→ Pattern T
Γ;∆0 ⊢ p1 : Pattern S1;∆1 Γ;∆1 ⊢ p2 : Pattern S2;∆2

· · · Γ;∆n−1 ⊢ pn : Pattern Sn;∆n

Γ;∆0 ⊢ (C p1 p2 ... pn) : Pattern T ;∆n
TP-Constructor

Figure 4.2: Typing rules for matchAll and patterns of Typed Egison

p is to be matched against a value of type T under the type environment Γ;∆,
where the additional environment ∆ gives type assignment on pattern variables
that occur on the left of p.∗ This judgement denote that p has the type T
under the type environment Γ and ∆ updating ∆ to ∆′. ∆ is an additional type
environment that describes the types of variables bound to the left of the pattern
p. The comma-separated pair Γ,∆ concatenates the two type environments Γ
and ∆, where type assignments x in ∆ may override those in Γ.

We explain the typing rules for patterns, focusing on the type environments
∆ for patterns. The type environment ∆ keeps track of types of pattern variables
in non-linear patterns. The rule (TP-Var) adds a type binding for each pattern
variable. These assignments in ∆ are used to type-check the content of a value
pattern (TP-Value). The type environment ∆ is updated and passed in a
pattern in order from left to right (TP-Constructor).

In figure 4.2, we do not define the behavior for the case where a single pattern
has multiple occurrences of the same pattern variables. This is because we cannot
find a useful example that contains such a pattern. Currently, we implement
miniEgison to override the binding on variable x, if x ∈ dom(∆) in TP-Var.
A value pattern #x refers to the value matched by the closest preceding pattern
variable $x.

4.3 Implementation of Sweet Egison

Sweet Egison embeds Egison pattern matching into Haskell by converting pat-
terns to a program that uses backtracking monads by utilizing the meta-programming
facility of Haskell. There are three technical challenges for implementing Sweet
Egison.

1. Prepare backtracking monads for both depth-first search and depth-first
search.

∗We borrow this notation from [51].
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2. Design a set of translation rules that convert Egison pattern-match expres-
sions to Haskell programs that are type-inferable.

3. Enable the users to define their own patterns and matchers.

This section explains our solution. Section 4.3.1 implements the backtracking
monads for depth-first search and breadth-first search, and explains the method
for defining new backtracking monads. Section 4.3.2 explains how Sweet Egison
controls the search strategy for pattern matching utilizing these backtracking
monads. Section 4.3.3 explains how we convert a pattern-match expression to
a Haskell program that uses the backtracking monads. Section 4.3.4 explains
how we define matchers in Sweet Egison. Section 4.3.5 explains the type of the
pattern-match expressions in Sweet Egison. Section 4.3.6 explains the optimiza-
tion techniques implemented in Sweet Egison.

4.3.1 Backtracking Monads

The goal of this section is to define backtracking monads that behave as follows.

toList (do

x <- (fromList [1,2,3] :: DFS Integer)

y <- fromList [1,2,3]

return (x, y))

-- [(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]

toList (do

x <- (fromList [1,2,3] :: BFS Integer)

y <- fromList [1,2,3]

return (x, y))

-- [(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(2,3),(3,2),(3,3)]

The first and second expressions use the DFS and BFS monads, respectively. We
switch a search strategy by changing the monad. The toList and fromList func-
tions define the conversion between the value of these backtracking monads and
lists. To make these conversion functions polymorphic, we define the MonadSearch

type class. The MonadSearch type class takes the type variable m as its argument.
This argument is used to represent two class methods, fromList and toList, are
polymorphic to m.

class MonadSearch m where

fromList :: [a] -> m a

toList :: m a -> [a]

The implementation of the DFS monad is simple because we can use the list
monad as the DFS monad. We define the type constructor DFS as the alias of the
type constructor of lists.

type DFS = []

Then we can use the id function for both fromList and toList.

instance MonadSearch [] where

fromList = id

toList = id

Our implementation of the BFS monad follows Spivey’s method [78]. It is
known by Spivey that we can implement a monadic interface also for breadth-first
search. Spivey’s monad uses a list of lists as the data structure for a backtrack-
ing monad for breadth-first search. Here is an implementation of a monad for
breadth-first search.
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newtype BFS a = BFS [[a]]

instance MonadPlus BFS where

mzero = BFS []

mplus (BFS xss) (BFS yss) = BFS (merge xss yss)

where

merge :: [[a]] -> [[a]] -> [[a]]

merge [] [] = []

merge xss [] = xss

merge [] yss = yss

merge (xs:xss) (ys:yss) = (xs ++ ys) : merge xss yss

instance Monad BFS where

return x = BFS [[x]]

BFS [] >>= _ = BFS []

BFS (xs:xss) >>= f = foldl mplus mzero (map f xs) mplus shift (BFS xss >>= f)

where

shift :: BFS a -> BFS a

shift (BFS xss) = BFS ([] : xss)

In fact, the above program implements the identical algorithm that traverses
the binary reduction tree we discussed in Section 2.4.2. The list of lists in this
backtracking monad represents the list of lists of matching states in the same
depth level in a binary reduction tree.

The conversion for a backtracking monad for breadth-first search is defined
as follows.

instance MonadSearch BFS where

fromList xs = BFS (map (\x -> [x]) xs)

toList (BFS xss) = concat xss

We can investigate how this BFS monad backtracks in breadth-first order by
the following code (the negate function changes the sign of the given integer).

do x <- (fromList [1..] :: BFS Integer)

y <- fromList (map negate [1..])

return (x, y))

-- [[(1, -1)], [(1, -2), (2, -1)], [(1, -3), (2, -2), (3, -1)], ...]

We have implemented the library that provides the above DFS and BFS monads.
We make this program open to public as a Hackage library [35]. Sweet Egison
uses this Haskell library.

4.3.2 Control of Search Strategy

For enabling the users to choose a search strategy, we transform pattern-match
expressions to do expressions that use the monads that are instances of the
MonadSearch type class. For example, the pattern-match expression

matchAll strategy [1..] (Set Something) [[mc| $x : $y : _ -> (x, y) |]]

is transformed as follows:

1 toList

2 ((\ (matcher, target) -> do

3 (x, target') <- fromList (cons matcher target)

4 let (_, matcher') = consM matcher target

5 (y, _) <- fromList (cons matcher' target')

6 let (_, _) = consM matcher' target'

7 return (x, y))

8 (strategy (Set Something, [1..])))
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The fromList function is applied to the result of next-target functions. The toList

function is applied to the return value of the do expression. The strategy function,
the first argument of matchAll, is used to initialize the monad value that is passed
to the do expression. The strategy function takes the tuple that consists of the
matcher and the target of matchAll. As shown in Section 4.1.1, we pass dfs or bfs

to the first argument of matchAll.
Now, we explain the implementation of dfs and bfs. The dfs and bfs functions

take a single value and return the monad value. The dfs strategy is defined as
follows.

dfs :: a -> DFS a

dfs x = [x]

The bfs strategy is defined as follows.

bfs :: a -> BFS a

bfs x = fromList [x]

We can use the fromList function for this purpose.

4.3.3 Translation Rules

Figure 4.3 shows the list of translation rules implemented in the mc quasi-quoter.
The mc quasi-quoter converts a match clause to a function that takes a tuple of
a matcher and target, and returns the results of evaluating the body for each
pattern-match result. In Figure 4.3, [mc| p → e |] is abbreviated to [| p → e |].
The rest of this section explains each translation rule by showing the specific
examples.

4.3.3.1 Converting Wildcards

We do nothing to pattern-match a wildcard because pattern-matching of a wild-
card always succeeds.

[mc| _ -> body |]

\ (_, _) -> return body

4.3.3.2 Converting Pattern Variables

The only difference from the translation rule of a wildcard is that we assign the
target to the pattern variable. Pattern-matching of a pattern variable also always
succeeds.

[mc| $x -> body |]

\ (_, target) -> do

let x = target

return body

4.3.3.3 Converting Value Patterns

A value pattern is converted to a program that calls the value next-target function.
The value function checks whether its first and third arguments are equal or not.
If they are equal, the value function returns a non-empty list. Otherwise, it
returns the empty list.
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wildcard

[| → e |] = \ ( , ) → return e

pattern variable

[| $x → e |] = \ ( , t) → let x = t in return e

value pattern

[| #v → e |] = \ (m, t) → fromList (value v m t) >> return e

empty tuple pattern

[| () → e |] = \ ((), ()) → return e

tuple pattern

[| (p1, · · · , pn) → e |] = \ ((m1, · · · ,mn), (t1, · · · , tn)) →
[| p1 → [| (p2, · · · , pn) → e |]

(m2, · · · ,mn) (t2, · · · , tn) |] m1 t1

constructor pattern

[| c p1 · · · pn → e |] = \ (m, t) → do {
(t1, · · · , tn) ← fromList (c m t);

let (m1, · · · ,mn) = cM m t;

[| (p1, · · · , pn) → e |] (m1, · · · ,mn) (t1, · · · , tn) }

Figure 4.3: Translation rules of match clauses

[mc| #v -> body |]

\ (matcher, target) -> do

fromList (value v matcher target)

return body

4.3.3.4 Converting Tuple Patterns

When the pattern is the empty-tuple pattern, the corresponding matcher and
target must be the empty tuple. Otherwise, the pattern-match expression causes
a type error at compile time.

[mc| () -> body |]

\ ((), ()) -> return body

The elements of a non-empty tuple pattern are converted in sequence from the
pattern of the first element in order. We use recursion in the translation rule of
the tuple pattern for implementing this sequential conversion.

[mc| ($x, $y) -> body |]

\ ((m1, m2), (t1, t2)) -> do

let x = t1

do let y = t1

return body
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4.3.3.5 Converting Constructor Patterns

A constructor pattern is converted to a program that calls the corresponding next-
target and next-matcher functions. The number of elements of the tuples returned
by these functions is the same as the number of the argument of constructor
patterns. We use the translation rules for tuple patterns for handling the next
targets and matchers.

[mc| cons $x $y -> body |]

\ (matcher, target) -> do

(t1, t2) <- fromList (cons matcher target)

(m1, m2) <- consM matcher target

do let x = t1

do let y = t2

return body

4.3.4 Defining Matchers

This section explains how we define user-defined patterns and matchers.
The relationship between a matcher and its target datatype is represented

using a multi-parameter type class [48] that declares no class method. The type
constraint Matcher m t asserts that m is a matcher for t.

class Matcher m t

We can declare that data of some type are matchers for data of another type
by instance declaration for Matcher. The following instance declaration asserts
that Eql is a matcher for the type a that is an instance of Eq. Basically, a matcher
is defined as a singleton type.

data Eql = Eql

instance Eq a => Matcher Eql a

4.3.4.1 Matchers for Collections

This section explains how we define polymorphic patterns in Sweet Egison by
showing the definition of the cons pattern for a multiset.

The List m matcher is defined as a data type whose type and data constructor
are identical.

data List m = List m

The List m matcher is an instance of the Matcher type class. This instance decla-
ration asserts that List m is a matcher for a list of elements of the type t when m

is a matcher for the type t.

instance Matcher m t => Matcher (List m) [t]

The definition of the Multiset datatype is completely the same as that of List.

data Multiset m = Multiset m

instance Matcher m t => Matcher (Multiset m) [t]

The patterns for collections are defined as functions of the CollectionPat type
class. In the following code, the definitions of the nil and join patterns are
omitted.
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class CollectionPattern m t where

type ElemM m

type ElemT t

consM :: m -> t -> (ElemM m, m)

cons :: m -> t -> (ElemT t, t)

Index type families (ElemM and ElemT) are used for extracting the matcher and type
of the elements of a target collection. The consM function takes a matcher and
returns the next matchers. The cons function takes a target datum and returns
the next targets. The pattern-match algorithm for the cons pattern is bound
to cons because we implement the mc quasi-quoter to desugar “:” in patterns to
the cons pattern constructors. For example, the pattern $x : _ is desugared to
cons $x _.

Then, the pattern-match algorithms for the cons pattern of List m and Multiset

m can be defined as an instance of CollectionPat.

instance Matcher m t => CollectionPattern (List m) [t] where

type ElemM (List m) = m

type ElemT [t] = t

consM (List m) _ = (m, List m)

cons _ [] = []

cons (List _) (x : xs) = [(x, xs)]

instance Matcher m t => CollectionPattern (Multiset m) [t] where

type ElemM (Multiset m) = m

type ElemT [t] = t

consM (Multiset m) _ = (m, Multiset m)

cons (Multiset _) xs = matchAll dfs xs (List Something)

[[mc| $hs ++ $x : $ts -> (x, hs ++ ts) |]]

4.3.4.2 The Eql Matcher

This section explains how to define a pattern-match algorithm for value patterns.
First, we start from the definition of the Eql matcher. Eql is a matcher for

data types that belong the Eq type class.

data Eql = Eql

instance Eq a => Matcher Eql a

As we explained in Section 4.3.3, the value pattern is converted to the application
of the value next-target function. The value next-target function is defined as a
function of the ValuePattern type class to achieve ad-hoc polymorphism. The first
argument of value is a value passed to the value pattern. The value function
compares this value with the target that is passed as the third argument. The
value function has the default definition that compares the value and the target
using ==.

class Eq t => ValuePattern m t where

value :: t -> m -> t -> [()]

default value :: Eq t => t -> m -> t -> [()]

value e _ v = if e == v then [()] else []

We use the default definition of value for the Eql matcher. The Eql matcher uses
== for pattern-matching value patterns.

instance Eq a => ValuePattern Eql a

Ad-hoc polymorphism of value allows us to define equality of non-free data
types for which we cannot use ==. For example, we can define a pattern-match
method for a value pattern of a multiset as follows.
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instance (Eq a, Matcher m a, ValuePattern m a)

=> ValuePattern (Multiset m) [a] where

value e () (Multiset m) v = match dfs (xs, ys) (List m, Multiset m)

[ [mc| ([], []) -> True |]

, [mc| ($x : $xs, #x : #xs) -> True |]

, [mc| _ -> False |] ]

4.3.4.3 The Something Matcher

The definition of the Something matcher is simple in Sweet Egison. This is because
the pattern-match method for wildcards and pattern variables are already defined
in our translation rules. In the following code, we just declare that we can use
the Something matcher for all the data types.

data Something = Something

instance Matcher Something a

4.3.5 Typing the Pattern-Match Expressions

This section explains the type of the matchAll expression of Sweet Egison. The
matchAll expression is defined in Haskell as follows.

matchAll

:: (Matcher m t, MonadSearch s)

=> ((m, t) -> s (m, t))

-> t

-> m

-> [(m, t) -> s r]

-> [r]

matchAll strategy target matcher =

concatMap (\clause -> toList (strategy (matcher, target) >>= clause))

The type constraint Matcher m t states that m is a matcher for t. The first argu-
ment is a search strategy whose type is ((m, t) -> s (m, t)). As we explained
in Section 4.3.2, a search strategy is a function that creates data of a type that
is an instance of the MonadSearch type class. The type of the forth argument is
[(m, t) -> s r]. This represents the type of a list of converted match clauses. As
we explained in Section 4.3.3, a match clause is converted to a function that takes
a tuple of a matcher and target and returns the results evaluating the body for
each pattern-match result.

4.3.6 Optimization

We have implemented wildcard optimization and pattern fusion in Sweet Egison.
This section explains how we have implemented them.

4.3.6.1 Wildcard Optimization

Wildcard optimization omits the calculation of the target that matches wildcard
(Section 2.5.2). For example, if the second argument of the cons pattern is a
wildcard, we do not need to calculate the rest.

matchAll dfs [1, 2, 3] (Multiset Something)

[[mc| $x : $xs -> (x, xs) |]]

-- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]
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matchAll dfs [1, 2, 3] (Multiset Something)

[[mc| $x : _ -> x |]]

-- [1, 2, 3]

For wildcard optimization, we add an argument to the definition of patterns
to tell whether the argument pattern is wildcard or not. If an argument is a
wildcard, the pattern returns undefined as the next target. Thus, we omit the
calculation.

cons (GP, WC) (Multiset Something) [1, 2, 3]

-- [(1, undefined), (2, undefined), (3, undefined)]

cons (GP, GP) (Multiset Something) [1, 2, 3]

-- [(1, [2, 3]), (2, [1, 3]), (3, [1, 2])]

GP and WC are data constructors of PP and abbreviations of a general pattern and
wildcard, respectively. PP is the abbreviation of a pattern for patterns.

data PP = WC | GP

Let us see how the definition of the cons pattern for multisets changes. The
cons function takes a pair of patterns for patterns as its first argument because
the cons pattern takes two patterns as its argument.

class CollectionPattern m t where

...

cons :: (PP, PP) -> m -> t -> (ElemT t, t)

...

Here is a definition of the cons function. When the second argument of the cons
pattern is a wildcard, the cons function does not compute the rest elements.

instance Matcher m t => CollectionPattern (Multiset m) [t] where

...

cons (_, WC) (Multiset _) xs = map (\x -> (x, undefined)) xs

cons _ (Multiset _) xs = matchAll dfs xs (List Something)

[[mc| $hs ++ $x : $ts -> (x, hs ++ ts) |]]

...

4.3.6.2 Pattern Fusions

Pattern fusion is invented for applying wildcard optimization for nested patterns
(Section 2.5.3). For example, we can apply pattern fusion for a join pattern whose
second argument is a cons pattern.

matchAll dfs [1, 2, 3] (List Something)

[[mc| _ ++ $x : _ -> x |]]

-- [1, 2, 3]

If we handle join and cons separately, we calculate all the suffixes and get the
first element of each suffix.

do (_, target') <- join (Wildcard, GeneralPat) target

(x, _) <- cons (GeneralPat, Wildcard) target'

return x

On the contrary, if we handle join and cons at the same time and apply wildcard
optimization, we can omit the calculation of all the suffixes of the target list and
just enumerate its elements.

do (_, x, _) <- joinCons (Wildcard, GeneralPat, Wildcard) target

return x
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We define the joinCons function as follow.

joinCons (WildCard, GeneralPat, Wildcard) (List Something) [1, 2, 3]

-- [(undefined, 1, undefined), (undefined, 2, undefined), (undefined, 3,

undefined)]

Currently, Sweet Egison does not allow the users to define new pattern fusion.
The transformation from _ ++ $x : _ to joinCons _ $x _ is hard-coded in the im-
plementation of the mc quasi-quoter that transforms patterns to do expressions.
On the other hand, the original Egison language has a user interface for defining
pattern fusion. Pattern fusion is defined by pattern-matching patterns. We may
borrow this user interface when we implement Sweet Egison as a GHC extension.

list a = matcher

| _ ++ $ : _ as a with

| tgt -> tgt

| _ ++ $ as list a with

| tgt -> tails tgt

| $ ++ $ as (list a, list a) with

...

4.3.7 Summary

Sweet Egison transforms an Egison pattern-match expression to a Haskell pro-
gram whose appearance is similar to a program that we manually write when
describing backtracking. We summarize our method for this transformation as
follows.

1. The users can define their own search strategies by defining a backtracking
monad (Section 4.3.1).

2. Sweet Egison transforms a match clause to a program that uses a back-
tracking monad by the quasi-quote of Template Haskell (Section 4.3.2 and
Section 4.3.3).

3. Sweet Egison allows the users to define polymorphic patterns as the original
Egison interpreter (Section 4.3.4).

4. Both wildcard optimization and pattern fusion are implemented in Sweet
Egison (Section 4.3.6).

4.4 Related Work

Over the decades, several pattern-match extensions have been proposed and im-
plemented in Haskell. Views [92] are an early such extension that provides users
with the user-customizable pattern matching facility. Views allow the users to
define custom pattern-match algorithms for each pattern constructor. However,
views support neither non-linear patterns nor pattern matching with backtrack-
ing. Active patterns [39] provides the user-customizable pattern matching facility
with non-linear patterns. However, active patterns do not support backtracking
and thus fail to fully utilize the expressiveness of non-linear patterns. First-class
patterns [89] provides the user-customizable pattern matching with backtracking.
However, first-class patterns do not support non-linear patterns. The pattern-
match system of Egison can be regarded as an extension that supports all the
features proposed above: user-customizable pattern-match algorithms; non-linear
patterns; pattern matching with multiple results. Implementations of some of the
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comb2
(n = 15, 000)

comb2
(n = 30, 000)

perm2
(n = 5, 000)

perm2
(n = 10, 000)

Functional style 0.323 1.264 0.717 3.862

miniEgison 16.123 63.45 6.287 25.133

Sweet Egison
(w/o pattern
fusion)

1.291 5.077 0.686 3.572

Sweet Egison 0.291 1.035 0.690 3.483

Table 4.1: Execution time of comb2 and perm2 in seconds

above pattern-match extensions are available as open-source and compilable with
the latest GHC. Views are implemented as a GHC extension. First-class patterns
are implemented as a Haskell library by Pope and Yorgey and distributed via
Hackage [69].

Sweet Egison is not the first attempt to implement the Egison pattern-match
facility as a library of mainstream functional programming languages. Before
Sweet Egison, we developed miniEgison, a library that provides the Egison pattern-
match facility, in Scheme [34] and Haskell.

We briefly explain the approach taken by miniEgison. MiniEgison also trans-
forms Egison pattern-match expressions to the Haskell programs. But the method
for this transformation is different. MiniEgison embeds an interpreter for Egi-
son pattern matching, whereas Sweet Egison embeds a compiler. MiniEgison
calls this interpreter via the patternMatch function that implements the inter-
nal pattern-match algorithm, reduction of matching states that have a stack of
matching atoms, explained in Section 2.4. The patternMatch function takes a pat-
tern, target, and matcher and returns pattern-match results. Here is an example
of the conversion by MiniEgison.

matchAll [1, 2, 3] (Multiset Something)

[mc| $x : $y : _ -> (x, y) |]

map (\x, y) -> (x, y))

(patternMatch [1, 2, 3] (Multiset Something) ($x : $y : _))

In implementing miniEgison, we heavily reuse the ideas from the implementation
of the first-class patterns [69]: a pattern is defined as a function that takes a target
and returns a pattern-match result, which is represented by a heterogeneous
list. The development of the conversion of miniEgison is not straightforward
because we need to make converted programs automatically type-inferable by
GHC. Especially, typing of matching states was challenging. GHC extensions
such as GADTs and existential types play essential roles for this purpose.

4.5 Performance

This section discusses the execution performance of Sweet Egison. First, we
compared the performance of programs that enumerate two combinations and
permutations of elements, namely comb2 and perm2, implemented in a traditional
functional style and pattern-match-oriented style in Haskell. Table 4.1 shows the
benchmark results. The definitions of the comb2 and perm2 functions are shown in
Figure 4.4. The comb2 function contains a join-cons pattern that we can apply
pattern fusion. Let us remind you that pattern fusion is not implemented in
miniEgison.
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CDCL
(20 vars)

CDCL
(50 vars)

CDCL
(75 vars)

CDCL
(100 vars)

Egison 2.114 40.565 1175.28 n/a

miniEgison 0.045 1.459 15.957 347.82

Sweet Egison 0.026 0.120 1.036 27.471

Table 4.2: Execution time of SAT solvers in seconds

comb2 :: Int -> [(Int, Int)]

comb2 n = matchAll dfs [1 .. n] (List Something)

[[mc| _ ++ $x : _ ++ $y : _ -> (x, y) |]]

comb2Native :: Int -> [(Int, Int)]

comb2Native n = [ (x, y) | (x : ts) <- tails [1 .. n], y <- ts ]

perm2 :: Int -> [(Int, Int)]

perm2 n = matchAll dfs [1 .. n] (Multiset Something)

[[mc| $x : $y : _ -> (x, y) |]]

perm2Native :: Int -> [(Int, Int)]

perm2Native n = go [1 .. n] [] []

where

go [] _ acc = acc

go (x : xs) rest acc =

[ (x, y) | y <- rest ++ xs ] ++ go xs (rest ++ [x]) acc

Figure 4.4: Benchmark programs

We also benchmarked our implementation of conflict-driven clause learning
(CDCL), an algorithm for solving SAT, in a pattern-match-oriented program-
ming style. Table 4.2 shows the benchmark results. The complete benchmarking
program is accessible on GitHub [56]. Our program for CDCL does not contain
a pattern that we can apply pattern fusion.

We compiled our benchmarks by the Glasgow Haskell Compiler (GHC) 8.10.7
and ran them on a 2.3GHz Dual-Core Intel Core i5 processor with 16GB of
RAM. We passed the options -O3 -threaded -rtsopts -with-rtsopts=-N to GHC for
compiling the above programs. The benchmark results show that:

• Pattern-match-oriented style programs written in Sweet Egison are as fast
as traditional functional style programs in Haskell.

• Sweet Egison runs about 100 times faster than the original Egison inter-
preter.

• Sweet Egison runs about 10 times faster than miniEgison.

• Pattern fusion is important for improving execution performance.

The performance difference between miniEgison and Sweet Egison comes from
miniEgison’s internal pattern-match algorithm as a reduction of matching states,
which makes it hard to be optimized by GHC.

4.6 Conclusion

In this chapter, we showed that user-customizable non-linear pattern matching
with backtracking implemented in the Egison programming language is imple-
mentable as a Haskell library. We showed that Egison pattern matching can be
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statically typed. Thanks to the static type system, we can detect type errors at
compile time before executing programs. For this purpose, we proposed a new set
of typing rules and a method for embedding these typing rules in Haskell utilizing
GHC extensions. These typing rules allow us to handle ad-hoc polymorphism of
patterns and non-linear patterns.

The proposed library makes Egison pattern matching accessible from Haskell
users — a majority of functional programmers. Not only that, the proposed li-
brary is much faster than the original Egison interpreter and endures practical
use. We have already utilized Sweet Egison for implementing the computer alge-
bra system implemented in the Egison interpreter. We hope the proposed library
increases the number of Egison fans and leads to more inventions of practical
applications of pattern-match-oriented programming.
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Chapter 5

Computer Algebra System and Tensor Index

Notation

5.1 Overview

In mathematics, many notations have been invented for the concise representation
of mathematical formulae. Tensor index notation is one of such notations and has
been playing a crucial role in describing formulae in mathematical physics. In this
chapter, we show a programming language that can deal with symbolic tensor
indices by introducing a set of tensor index rules that is compatible with two
types of parameters, i.e., scalar and tensor parameters. When a tensor parameter
obtains a tensor as an argument, the function treats the tensor argument as a
whole. In contrast, when a scalar parameter obtains a tensor as an argument,
the function is applied to each component of the tensor. On a language with
scalar and tensor parameters, we can design a set of index reduction rules that
allows users to use tensor index notation for arbitrary user-defined functions
without requiring additional description. Furthermore, we can also design index
completion rules that allow users to define the operators concisely for differential
forms such as the wedge product, exterior derivative, and Hodge star operator.
In our proposal, all these tensor operators are user-defined functions and can be
passed as arguments of high-order functions. We have implemented our proposal
in the computer algebra system that is implemented in the interpreter of our
language using Sweet Egison.

This chapter is organized as follows. Section 5.2 introduces related work.
Section 5.3 proposes our symbolic index reduction rules for importing tensor index
notaion. Section 5.4 proposes our symbolic index completion rules for describing
formulae that handle differential forms. Section 5.5 demonstrates our computer
algebra system. Section 5.6 evaluates our proposal. Section 5.7 concludes this
chapter.

5.2 Related Work

This section classifies the existing method for handling tensor index notation in
programs.

5.2.1 Syntax-based Approach

The current major method for dealing with tensors is using a special syntax
for describing loops for generating multi-dimensional arrays. The Table [13] ex-
pression from the Wolfram language is such a syntax construct. Xij + Yij is
represented as follows with the Table expression. The following program assumes
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that the length of each dimension corresponding to each index of the tensor are
a constant M.

Table[X[[i,j]] + Y[[i,j]],{i,M},{j,M}]

For contracting tensors, we use the Sum [12] expression inside Table. Xi
kY

k
j is

represented as follows.

Table[Sum[X[[i,k]] * Y[[k,j]],

{k,M}],

{i,M},{j,M}]

This method has the advantage that we can use an arbitrary function defined for
scalar values for tensor operations. The following Wolfram program represents
∂Xij/∂x

k. D is the differential function in the Wolfram language.

Table[D[X[[i,j]],x[[k]]],{i,M},{j,M},{k,M}]

Due to this advantage, the Wolfram language has been used by mathematicians
in actual research [61, 60]. However, in this method, we cannot modularize tensor
operators such as tensor multiplication by functions. Due to this restriction, we
cannot syntactically distinguish applications of different tensor operators, such
as tensor multiplication, wedge product, and Lie derivative, in programs. This
is because we need to represent these tensor operators combining Table and Sum

every time when we use them. Modularization by functions is also important
for combining index notation with high-order functions. If we can pass tensor
operators to high-order functions, we can represent a formula like “Xi1Xi2 ...Xin”
(the number of tensors multiplied depends on the parameter n) by passing the
operator for tensor multiplication to the fold function [22]. There are other
existing works that take the same approach with the Wolfram language. NumPy’s
einsum operator [11], Diderot’s EIN operator [55], and tensor comprehensions [91]
are such work. Some of them provide a syntactic construct whose appearance is
similar to mathematical formulae. However, they have the same restriction on
function modularization. This restriction comes from the requirement that users
need to specify the indices of the result tensors (e.g., “ij” of Aij = XikYkj) for
determining whether to contract a pair of identical symbolic indices.

5.2.2 Library-based Approach

Another method for dealing with tensors is using library functions prepared for
handling symbolic tensor indices. Using this method enables index notation to
be directly represented in a program as the mathematical expressions. However,
in this method, it is not easy for many users to define new tensor operators by
themselves. One of the reasons is that index rules differ for each operator as
mentioned in Introduction. We need to describe the index rules for each tensor
operator when defining them. For example, the program below is the definition
of tensor addition in SageMath [15].

def __add__(self, other):

permutation = list(range(other._tensor.tensor_rank()))

for other_index in range(other._tensor.tensor_type()[0]):

if other._con[other_index] == self._con[other_index]:

permutation[other_index] = other_index

else:

permutation[other_index] = self._con.index(other._con[other_index])

for other_index in range(other._tensor.tensor_type()[1]):

if other._cov[other_index] == self._cov[other_index]:

permutation[other._tensor.tensor_type()[0] + other_index]\
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= other._tensor.tensor_type()[0] + other_index

else:

permutation[other._tensor.tensor_type()[0] + other_index]\

= other._tensor.tensor_type()[0] + self._cov.index(other._cov[

other_index])

result = self.__pos__()

result._tensor = result._tensor + other.permute_indices(permutation)._tensor

return result

The C++ library by Åhlander [16], ITensor [42] library in Julia, and Sage-
Math [15] also provides the tensor operators that can handle symbolic tensor
indices in a similar way.

We propose a method for reducing these additional descriptions for handling
symbolic tensor indices for defining tensor operators. By simplifying index rules,
we can unify index rules of many tensor operators. As a result, we can set the
default index rules and omit the descriptions of index rules from the definitions
of tensor operators.

5.2.3 Array-Oriented Programming

Array-oriented programming languages, such as APL and J, take a completely
different approach. They do not use tensor index notation for representing tensor
calculus. Instead, they invented a new notion, function rank [21]. Function rank
specifies how to map the operators to the components of tensors. When the
specified function rank is 0 for an argument matrix, the operator is mapped to
each scalar component of the matrix (Ai+Bjk). When the specified function rank
is 1 for an argument matrix, the operator is mapped to the rows of the matrix
by regarding the matrix as a vector of vectors (Aj + Bij). When the specified
function rank is 2 for an argument matrix, the operator is applied to the matrix
directly (Ai +Bij).

J> (2 $ 1 2) +"1 0 (2 2 $ 10 20 30 40)

11 12

21 22

31 32

41 42

J> (2 $ 1 2) +"1 1 (2 2 $ 10 20 30 40)

11 22

31 42

J> (2 $ 1 2) +"1 2 (2 2 $ 10 20 30 40)

11 21

32 42

Function ranks allow users to apply functions defined for scalar values to tensors.
A similar idea to the function rank is also imported into various programming
languages and frameworks, including Wolfram [8] and NumPy [14]. However, the
function rank has a limitation that it does not allow to represent an expression
that requires transposition of an argument tensor: e.g., Aij+Bji (this expression
requires the transposition of the matrix B).

We show that our simplified index rules are compatible with scalar and tensor
parameters, which is a simplified notion of function rank. Our simplified index
rules allow us to set the default index rules. The combination of the default index
rules and function ranks allows us to apply functions defined for scalar values to
tensors using index notation.
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5.2.4 Differential Forms

Differential forms are important concepts in differential geometry. Differential
forms are used to describe formulae in differential geometry in a coordinate in-
dependent way. By combining the operators for differential forms, such as the
wedge product and exterior derivative, we can concisely describe various formu-
lae in differential geometry. Differential forms can be represented as tensors and
formulae that we can describe using differential forms include formulae in tensor
calculus [74].

There are numerous independent works [53, 79, 15] for programming differ-
ential forms. What makes programming of differential forms difficult is that
differential forms are alternating multi-linear forms (e.g., dx ∧ dy = −dy ∧ dx)
and have many representation. These works prepare special data structures for
representing this property of differential forms. As a result, programming for
tensor calculus and differential forms have been studied separately.

Our approach represents differential forms using multi-dimensional arrays as
we do for tensors. This approach allows us to use tensor index notation for
defining the operators for differential forms. We show that our simplified index
rules are useful for defining the operators not only for tensors but also differential
forms. By designing the index completion rules for omitted indices properly, we
become able to concisely define the operators for the differential forms. We
introduce our method for programming of differential forms in Section 5.4.

5.2.5 Symbolic Tensor Calculus

There are two types of approaches for manipulating tensors: the first approach
aims to compute each component of tensors and represents a tensor using some
data structures such as arrays; the second approach aims to simplify formulae
that contains tensors with symbolic indices and handles a tensor as a whole as a
symbol. The existing methods that we introduced so far take the first approach
and aims to compute each component of tensors. We also takes the first approach.

There are several libraries that implement the second approach. For example,
Ricci of the Wolfram language [59] and itensor of Maxima [9, 87, 77] are such
libraries. These libraries implement rewrite rules, such as gijΓjkl = Γi

kl where
gij is a metric tensor and d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη where ω is a p-form,
for simplifying formulae that contains tensors with symbolic indices.

The behaviors and definitions of tensor operators in these two approach are
completely different. We focuse on the first approach.

5.3 Index Reduction Rules for Importing Tensor Index Notation

This section presents a new method for importing tensor index notation into
programming languages. Briefly, it is achieved by introducing two types of pa-
rameters, scalar parameters and tensor parameters, and simple index reduction
rules. First, we introduce scalar and tensor parameters. Second, we introduce
a set of index reduction rules that is compatible with them. The combination
of scalar and tensor parameters and the proposed index reduction rules enables
us to apply user-defined functions to tensors using tensor index notation. We
demonstrate our proposal using the code in the Egison programming language.
Egison has a similar syntax to the Haskell programming language.
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def min $x $y := if x < y then x else y

(a) Definition of the min function

min(

1
2
3


i

,

10
20
30


j

) =

min(1, 10) min(1, 20) min(1, 30)
min(2, 10) min(2, 20) min(2, 30)
min(3, 10) min(3, 20) min(3, 30)


ij

=

1 1 1
2 2 2
3 3 3


ij

(b) Application of the min function to the vectors with different indices

min(

1
2
3


i

,

10
20
30


i

) =

min(1, 10) min(1, 20) min(1, 30)
min(2, 10) min(2, 20) min(2, 30)
min(3, 10) min(3, 20) min(3, 30)


ii

=

min(1, 10)
min(2, 20)
min(3, 30)


i

=1
2
3


i

(c) Application of the min function to the vectors with identical indices

Figure 5.1: Definition and application of min function

5.3.1 Scalar and Tensor Parameters

Scalar and tensor parameters are a similar notion to the function rank [21]. When
a scalar parameter obtains a tensor as an argument, the function is applied to
each component of the tensor. In contrast, when a tensor parameter obtains a
tensor as an argument, the function treats the tensor argument as a whole. We
call a function that takes only scalar parameters scalar function and a function
that takes only tensor parameters tensor function. For example, “+”, “-”, “*”,
and “/” should be defined as scalar functions; a function for multiplying tensors
and a function for matrix determinant should be defined as tensor functions.
The difference between function rank and these two types of parameters is that
function rank allows users to control the level of mapping, whereas scalar and
tensor parameters only allow users to specify whether we map the function to each
component of the tensor or not. Instead, the proposed tensor index reduction
rules combined with scalar and tensor parameters allow users to control the level
of mapping.

Figure 5.1a shows the definition of the min function as an example of a scalar
function. The min function takes two numbers as the arguments and returns
the smaller one. “$” is prepended to the beginning of the parameters of the
min function. It means the parameters of the min function are scalar parameters.
When a scalar parameter obtains a tensor as an argument, the function is applied
to each component of the tensor like tensor product as figures 5.1b and 5.1c. As
Figure 5.1c, if the indices of the tensors given as arguments are identical, the
result matrix is reduced to the vector that consists of the diagonal components.
This reduction is defined in the proposed tensor index reduction rules that will
be explained in the next section. Thus the min function can handle tensors even
though it is defined without considering tensors.

Figure 5.2a shows the definition of the “.” function as an example of a tensor
function. “.” is a function for multiplying tensors. “%” is prepended to the
beginning of the parameters of the “.” function. It means the parameters of
the “.” function are tensor parameters. As with ordinary functions, when a
tensor is provided to a tensor parameter, the function treats the tensor argument
as a whole maintaining its indices. “.” is defined as an infix operator. For
defining an infix operator, we enclose the name of a function with parenthesis.
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def (.) %t1 %t2 := contractWith (+) (t1 * t2)

(a) Definition of the “.” function1
2
3

i

·

10
20
30


i

= contractWith(+,

10 20 30
20 40 60
30 60 90

i

i

) = 10 + 40 + 90 = 140

1
2
3


i

·

10
20
30


i

= contractWith(+,

10
40
90


i

) =

10
40
90


i1

2
3


i

·

10
20
30


j

= contractWith(+,

10 20 30
20 40 60
30 60 90


ij

) =

10 20 30
20 40 60
30 60 90


ij

(b) Application of the “.” function

Figure 5.2: Definition and application of “.” function

Ri
jkl =

∂Γi
jl

∂xk
−

∂Γi
jk

∂xl
+ Γm

jlΓ
i
mk − Γm

jkΓ
i
ml

(a) Formula of Riemann curvature tensor

R=Table[D[Γ[[i,j,l]],x[[k]]] - D[Γ[[i,j,k]],x[[l]]]
+Sum[Γ[[m,j,l]] Γ[[i,m,k]]

- Γ[[m,j,k]] Γ[[i,m,l]],
{m,M}],

{i,M},{j,M},{k,M},{l,M}]

(b) Wolfram program that represents the formula in Figure 5.3a

def R~i_j_k_l := withSymbols [m]

∂/∂ Γ~i_j_l x~k - ∂/∂ Γ~i_j_k x~l + Γ~m_j_l . Γ~i_m_k - Γ~m_j_k . Γ~i_m_l

(c) A program by the proposed language that represents the formula in Figure 5.3a

Figure 5.3: Representations of Riemann curvature tensor formula

In Figure 5.2a, “+” and “*” are scalar functions for addition and multiplication,
respectively. contractWith is a function to contract a tensor that has pairs of a
superscript and subscript with identical symbols. Figure 5.2b shows the example
for calculating the inner product of two vectors using the “.” function. We can
use the “.” function for any kind of tensor multiplication such as tensor product
and matrix multiplication as well as inner product.

Let us show another example in differential geometry. When the mathematical
expression in Fugure 5.3a is expressed in a standard way in the Wolfram language,
it becomes a program such as the one shown in Figure 5.3b. The same expression
can be expressed in our system as shown in Figure 5.3c. Our system supports
two types of indices, both superscripts and subscripts. A subscript is represented
by “_”. A superscript is represented by “~”. A double loop consisting of the Table

and Sum expressions appears in the program in the Wolfram language, whereas
the program in our system is flat, similar to the mathematical expression. This is
achieved by using tensor index notation in the program. In particular, the reason
that the loop structure by the Sum expression in the Wolfram language does not
appear in our expression to express Γm

jkΓ
i
ml − Γm

jlΓ
i
mk is that the “.” function
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can handle Einstein summation notation. It is emphisized that the program (∂/

∂ Γ~i_j_k x~l) in this example expresses
∂Γi

jk

∂xl in the first term on the right-hand
side. In the Wolfram language, the differential function D is applied to each tensor
component, but our differential function ∂/∂ is applied directly to the tensors.

The differential function ∂/∂ is defined in a program as a scalar function like
the min function. When a tensor is provided as an argument to a scalar function,
the function is applied automatically to each component of the tensor. There-
fore, when defining a scalar function, it is sufficient to consider only a scalar as
its argument. That is, in the definition of the ∂/∂ function, the programmers
need write the program only for the case in which the argument is a scalar value.
Despite that, the program ∂/∂ Γ~i_j_k x~l returns a fourth-order tensor. Thus,
we can import tensor index notation including Einstein notation into program-
ming if we clearly distinguish between tensor functions such as “.” and scalar
functions such as “+” and ∂/∂.

5.3.2 Reduction Rules for Tensors with Indices

This section presents a whole set of index reduction rules that are compatible
with the scalar and tensor parameters. Let us consider the reduction rules only
for a single tensor, and that is enough to define the set of the index reduction
rules. This is because the reduction rules are applied only after a scalar function
is applied to tensor arguments as seen in Figure 5.1.

5.3.2.1 Multiple Identical Symbolic Indices

Tensors are reduced only when they have identical symbols as their indices. First,
let us discuss the cases that tensors have identical superscripts or subscripts.

When multiple indices of the same symbol appear, our system converts it
to the tensor composed of diagonal components for these indices. After this
conversion, the leftmost index symbol remains. For example, the indices “_i_j_i
” convert to “_i_j”. In our system, unbound variables are treated as symbols.
These symbols can be used as indices of tensors. In our system, a tensor is
expressed by enclosing its components with “[|” and “|]”. We express a higher-
order tensor by nesting this notation, as we do for an n-dimensional array. In this
thesis, we show the evaluation result of a program in the comment that follows
the program. “--” is the inline comment delimiter of our language.

[|[|11,12,13|],[|21,22,23|],[|31,32,33|]|]_i_j --

[|[|11,12,13|],[|21,22,23|],[|31,32,33|]|]_i_j

[|[|11,12,13|],[|21,22,23|],[|31,32,33|]|]_i_i -- [|11,22,33|]_i

[|[|[|1,2|],[|3,4|]|],[|[|5,6|],[|7,8|]|]|]_i_j_i -- [|[|1,3|],[|6,8|]|]_i_j

When three or more subscripts of the same symbol appear, our system converts
it to the tensor composed of diagonal components for all these indices.

[|[|[|1,2|],[|3,4|]|],[|[|5,6|],[|7,8|]|]|]_i_i_i -- [|1,8|]_i

Superscripts and subscripts behave symmetrically. When only superscripts are
used, they behave in exactly the same manner as when only subscripts are used.

[|[|[|1,2|],[|3,4|]|],[|[|5,6|],[|7,8|]|]|]~i~j~i -- [|[|1,3|],[|6,8|]|]~i~j
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E({A, xs}) =

if e(xs) = [] then

{A, xs})

elsif e(xs) = [{k,j}, . . . ] & p(k,xs) = p(j,xs) then

E({diag(k, j, A), remove(j, xs))

elsif e(xs) = [{k,j}, . . . ] & p(k,xs) != p(j,xs) then

E({diag(k, j, A), update(k, 0, remove(j, xs)))

Figure 5.4: Pseudo code of index reduction

5.3.2.2 Superscripts and Subscripts with Identical Symbols

Next, let us consider a case in which the same symbols are used for a superscript
and a subscript. In this case, some existing work [16] automatically contracts
the tensor using “+”. In contrast, our system just converts it to the tensor
composed of diagonal components, as in the above case. However, in this case,
the summarized indices become a supersubscript, which is represented by “~_”.

[|[|11,12,13|],[|21,22,23|],[|31,32,33|]|]~i_i -- [|11,22,33|]~_i

Even when three or more indices of the same symbol appear that contain both
superscripts and subscripts, our system converts it to the tensor composed of
diagonal components for all these indices.

[|[|[|1,2|],[|3,4|]|],[|[|5,6|],[|7,8|]|]|]~i~i_i -- [|1,8|]~_i

The reason not to contract it immediately is to parameterize an operator for
contraction. The components of supersubscripts can be contracted by using the
contractWith function. The contractWith function receives a function to be used
for contraction as the first argument, and a target tensor as the second argument.
This feature allows us to implement a tensor multiplication function.

contractWith (+) [|11,22,33|]~_i -- 66

In the above program, the “+” function is passed to contractWith as a prefix
operator. When an infix operator is enclosed with parenthesis, it becomes an
prefix operator.

The contractWith function is defined using the contract built-in function. The
contract function takes a tensor and returns the list that consists of diagonal
components.

contract [|11,22,33|]~_i -- [11,22,33]

5.3.2.3 Pseudo Code for Index Reduction

Figure 5.4 shows the pseudo-code of index reduction explained in the above.
E(A,xs) is a function for reducing a tensor with indices, where A is an array that
consists of tensor components and xs is a list of indices appended to A. For
example, E(A,xs) works as follows with the tensor whose indices are “~i_j_i”.
We use 1, -1, and 0 to represent a superscript, subscript, and supersubscript,
respectively.

E({[|[|[|1,2|],[|3,4|]|]

,[|[|5,6|],[|7,8|]|]|]

,[{i,1}, {j,-1}, {i,-1}]}) =

{[|[|1,3|],[|6,8|]|], [{i,0}, {j,-1}]}
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Let us explain the helper functions used in Figure 5.4: e(xs) is a function for
finding pairs of identical indices from xs; diag(k, j, A) is a function for creating
the tensor that consists of diagonal components of A for the k-th and j-th order;
remove(k, xs) is a function for removing the k-th element from xs; p(k, xs) is a
function for obtaining the value of the k-th element of the assoc list xs; update(k
, p, xs) is a function for updating the value of the k-th element of the assoc list
xs to p. These functions work as follows.

e([{i, 1}, {j, -1}, {i, -1}]) = [{1,3}]

diag(1, 2, [|[|11,12|],[|21,22|]|]) = [|11,22|]

p(2, [{i, 1}, {j, -1}]) = -1

remove(2, [{i, 1}, {j, -1}]) = [{i, 1}]

update(2, 0, [{i, 1}, {j, -1}]) = [{i, 1}, {j, 0}]

5.3.3 Implementation of Scalar and Tensor Parameters

Let us explain how to implement scalar and tensor parameters. The implementa-
tion of tensor parameters is the same with the ordinary parameters because the
function treats the argument tensor as it is. In contrast, a function with scalar
parameters is converted to a function only with tensor parameters by using the
tensorMap function as follows.

\ $x $y -> ...

-- => \ %x %y ->

-- tensorMap (\ %x -> tensorMap (\ %y -> ...) y))

-- x

As the name implies, the tensorMap function applies the function of the first argu-
ment to each component of the tensor provided as the second argument. When
the result of applying the function of the first argument to each component of
the tensor provided as the second argument is a tensor with indices, it moves
those indices to the end of the tensor that is the result of evaluating the tensorMap

function.
Let us review the min function defined in Figure 5.1a as an example. This min

function can handle tensors as arguments as follows.

min [|1,2,3|]_i [|10,20,30|]_j -- [|[|1,1,1|],[|2,2,2|],[|3,3,3|]|]_i_j

min [|1,2,3|]_i [|10,20,30|]_i -- [|1,2,3|]_i

Note that the tensor indices of the first evaluated result are “_i_j”. If the tensorMap

function simply applies the function to each component of the tensor, the result of
this program is [|[|1 1 1|]_j [|2 2 2|]_j [|3 3 3|]_j|]_i. However, as explained
above, if the results of applying the function to each component of the tensor are
tensors with indices, it moves those indices to the end of the tensor that is the
result of evaluating the tensorMap function. This is the reason that the indices
of the evaluated result are “_i_j”. This mechanism enables us to directly apply
scalar functions to tensor arguments using index notation as the above example.

Next, let us review the “.” function defined in Figure 5.2a as an example of a
tensor function. When a tensor with indices is given as an argument of a tensor
function, it is passed to the tensor function maintaining its indices. It allows us
to directly apply tensor functions to tensor arguments using index notation as in
the following example.

[|1,2,3|]~i . [|10,20,30|]_i -- 140

[|1,2,3|]_i . [|10,20,30|]_j -- [|[|10,20,30|],[|20,40,60|],[|30,60,90|]|]_i_j

[|1,2,3|]_i . [|10,20,30|]_i -- [|10,40,90|]_i
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ij

Figure 5.5: Index rule for partial derivative

Tensor parameters are rarely used compared with scalar parameters because
a tensor parameter is used only when defining a function that contracts tensors.

5.3.4 Inverted Scalar Arguments

The ∂/∂ function, the derivative operator, in Figure 5.3c is a scalar function.
However, ∂/∂ is not a normal scalar function. The ∂/∂ function is a scalar func-
tion that inverts indices of the tensor given as its second argument as shown in
Figure 5.5. For example, the program (∂/∂ Γ~i_j_k x~l) returns the fourth-order
tensor with the indices “~i_j_k_l”.

To define scalar functions such as ∂/∂, we use inverted scalar parameters. In-
verted scalar parameters are represented by “*$”. A program that uses inverted
scalar parameters is transformed as follows. The flipIndices function is a primi-
tive function for inverting the indices of a tensor provided as an argument upside
down. Supersubscripts remain as supersubscripts even if they are inverted.

def ∂/∂ $f *$x := ...

-- => def ∂/∂ %f %x := tensorMap (\ %f -> tensorMap (\ %x -> ...) (flipIndices x

))

-- f

In the following example, we apply ∂/∂ to tensors.

∂/∂ [|(r * (sin θ)),(r * (cos θ))|]_i [|r,θ|]_j
-- [|[|(sin θ),(r * (cos θ))|],[|(cos θ),(-1 * r * (sin θ))|]|]_i~j
∂/∂ [|(r * (sin θ)),(r * (cos θ))|]_i [|r,θ|]_i
-- [|(sin θ),(-1 * r * (sin θ))|]~_i

5.3.5 The withSymbols Expression

The withSymbols expression is syntax for generating new local symbols as the
Module [10] expression in the Wolfram language. One-character symbols that are
often used as indices of tensors such as i, j, and k are often used in another part
of a program. Generating local symbols using withSymbols expressions enables us
to avoid variable conflicts for such symbols.

The withSymbols expression takes a list of symbols as its first argument. These
symbols are valid only in the expression given in the second argument of the
withSymbols expression.

withSymbols [i] contractWith (+) ([|1,2,3|]~i * [|10,20,30|]_i) -- 60

It acts in a special way when the evaluation result of the body of the withSymbols

expression contains the symbols generated by the withSymbols expressions. In
that case, the result tensor is transposed to shift those symbols backward and
remove them. In the following evaluation result, the matrix is transposed because
j is shifted backward before it removed. This mechanism is useful to handle
differential forms that will be discussed in the next section.
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withSymbols [j] [|[|1,2|],[|3,4|]|]_j_i) -- [|[|1,3|],[|2,4|]|]_i

5.3.6 Tensor Declaration

In our system, when binding a tensor to a variable, we can specify the type of
indices in the variable name. For example, we can bind different tensors to g__, g
~~, R____, and R~___. This feature is also implemented in Maxima [9] and simplifies
variable names. In Figure 5.3c, we bind a tensor to the variable with symbolic
indices R~i_j_k_l. It is automatically desugared as follows.

def R~i_j_k_l := ...

-- => def R~___ := withSymbols [i,j,k,l]

-- (transpose [i,j,k,l] ...)

This syntactic sugar renders a program closer to the mathematical expression.
The transpose function is a built-in function for transposing the tensor in the
second argument as specified in the first argument.

5.3.7 Declaring Symmetric and Antisymmetric Tensors

Symmetric and anti-symmetric tensors often appear in differential geometry.
We can use symmetry to skip descriptions and calculation of symmetric com-
ponents. This section designs a syntax construct for declaring symmetry and
anti-symmetry of a tensor.

There is no special notation for declaring symmetry of tensors. For example,
the symmetries of Riemann curvature tensors are declared using equations as
follows.

Rabcd = −Rbacd

Rabcd = −Rabdc

Rabcd = Rcdab

We thought that it is redundant to declare tensor symmetries using the above
equation in a program. First, we need a complicated program to determine
which parts of the tensor are symmetric from the above equations. Second, the
symmetry declaration independent of the definition of a tensor itself makes the
specification of programming languages complex.

For these reasons, we want to define a tensor and declare its symmetries at
the same time. We found a hint in the mathematical notation for the commu-
tator. This notation is used to represent the sum and difference between values
combining two elements enclosed by parenthesis.

[a, b] = ab− ba

{a, b} = ab+ ba

This notation is also used in tensor indices.

R{ab}cd = Rabcd +Rbacd

R[ab]cd = Rabcd −Rbacd

Using this notation, we can describe the first two above symmetries of Riemann
curvature tensor as follows.

R{ab}cd = 0
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Rab{cd} = 0

By extending this notation, we can also describe the third symmetry.

R[(ab)(cd)] = 0

We noticed that by borrowing this notation we can merge the tensor definition
and symmetry declaration in a single expression. We show an example using the
definition of Rabcd.

Rabcd = gaiR
i
bcd

We declare symmetries of Rabcd by adding parenthesis in the list of symbolic
indices in the left-side of equation.

R[{ab}{cd}] = gaiR
i
bcd

We explain how we implemented this notation. We desugar the following
tensor declaration

def X{_i_j} := ...

as follows.

def X_i_j :=

let tmpX_i_j := ... in

generateTensor

(\i j -> if i > j then tmpX_j_i

else tmpX_i_j)

(tensorShape tmpX_#_#)

The desugared program uses the generateTensor expression. Thanks to the call-
by-need strategy, we do not compute all the components of tmpX. We can apply
the same method for anti-symmetric tensors.

def X[_i_j] := ...

The above tensor declaration is transformed as follows.

def X_i_j :=

let tmpX_i_j := ... in

generateTensor

(\i j -> if i > j then -tmpX_j_i

else if i = j then 0

else tmpX_i_j)

(tensorShape tmpX_#_#)

Finally, we show a case that symmetry declaration reduces the description of
a program. We found this case when writing a program for actual research of
differential geometry. We define a tensor R̄abcd that possesses the same symmetry
as Riemann curvature tensor. The tensor R̄abcd is defined as follows.

R̄00cd = 0, R̄0b0d = −p2gbd, R̄0bcd = −p∇bJcd,

R̄abcd = Rabcd − p2JbcJad + p2JacJbd + 2p2JabJcd

This tensor is defined using the generateTensor expression as follow.

def R'_i_j_k_l :=

generateTensor

(\is -> match is as list integer with

| [#1, #1, _, _] -> 0

| [_, _, #1, #1] -> 0

| [#1, $b, #1, $d] -> -1 * p^2 * g_(b - 1)_(d - 1)

77



| [$a, #1, #1, $d] -> p^2 * g_(a - 1)_(d - 1)

| [#1, $b, $c, #1] -> p^2 * g_(b - 1)_(c - 1)

| [$a, #1, $c, #1] -> -1 * p^2 * g_(a - 1)_(c - 1)

| [#1, $b, $c, $d] -> -1 * p * ∇J_(b - 1)_(c - 1)_(d - 1)

| [$a, #1, $c, $d] -> p * ∇J_(a - 1)_(c - 1)_(d - 1)

| [$a, $b, #1, $d] -> -1 * p * ∇J_(d - 1)_(a - 1)_(b - 1)

| [$a, $b, $c, #1] -> p * ∇J_(c - 1)_(a - 1)_(b - 1)

| [$a, $b, $c, $d] -> R_(a - 1)_(b - 1)_(c - 1)_(d - 1)

+ -1 * p^2 * J_(b - 1)_(c - 1) * J_(a - 1)_(d - 1)

+ p^2 * J_(a - 1)_(c - 1) * J_(b - 1)_(d - 1)

+ 2 * p^2 * J_(a - 1)_(b - 1) * J_(c - 1)_(d - 1))

[5, 5, 5, 5]

By using our notation for declaring symmetry, we can reduce the number of
branches in the generateTensor.

def R'{[_i_j][_k_l]} :=

generateTensor

(\is -> match is as list integer with

| [#1, #1, _, _] -> 0

| [#1, $b, #1, $d] -> -1 * p^2 * g_(b - 1)_(d - 1)

| [#1, $b, $c, $d] -> -1 * p * ∇J_(b - 1)_(c - 1)_(d - 1)

| [$a, $b, $c, $d] -> R_(a - 1)_(b - 1)_(c - 1)_(d - 1)

+ -1 * p^2 * J_(b - 1)_(c - 1) * J_(a - 1)_(d - 1)

+ p^2 * J_(a - 1)_(c - 1) * J_(b - 1)_(d - 1)

+ 2 * p^2 * J_(a - 1)_(b - 1) * J_(c - 1)_(d - 1))

[5, 5, 5, 5]

5.3.8 Pattern Matching for Tensor Indices

For defining a tensor operator, we sometimes need to rearrange symbolic tensor
indices of the argument tensors. For example, here is a mathematical formulae
that defines the covariant derivative operator.

∇cT
a1···ar

b1···bk =
∂

∂xc
T a1···ar

b1···bk

+ Γa1
dcT

da2···ar
b1···bk + · · ·+ Γar

dcT
a1···ar−1d

b1···bk

− Γd
a1cT

a1···ar
db2···bk − · · · − Γd

bkc
T a1···ar

b1···bk−1d

The symbolic tensor indices appended to the tensor T in left-side and right-side
of the equation are different.

In order to define such an operator, we allow to pattern-match symbolic tensor
indices of the argument tensors.

def ∇_c T~(a_1)...~(a_r)_(b_1)..._(b_k) :=

∂/∂ T~(a_1)...~(a_r)_(b_1)..._(b_k) x~c

+ sum (map (\i -> Γ~(a_i)_d_c .

T~(a_1)...~(a_(i-1))~d~(a_(i+1))...~(a_r)_(b_1)..._(b_k))

[1..r])

- sum (map (\i -> Γ~d_(b_i)_c .

T~(a_1)...~(a_r)_(b_1)..._(b_(i-1))_d_(b_(i+1))..._(b_k))

[1..k])

We allow to use “...” as we do in mathematical formulae. A pattern for tensor
indices that contains “...” matches the logest possible part.

5.4 Index Completion Rules for Tensors with Omitted Indices

By designing the index completion rules for omitted indices properly, we can
extend the proposed method explained so far to express a calculation handling
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the differential forms.

5.4.1 Representation of Differential Forms

This section explains how we represent differential forms in programs. In our
method, n-forms are represented by rank-n tensors. Let us show examples in
3-dimensional Euclidean space. One-forms dx, dy, and dz are represented as(
1 0 0

)
,
(
0 1 0

)
, and

(
0 0 1

)
, respectively. Two-forms dx∧dy and dz∧dx

are represented as
( 0 1 0
0 0 0
0 0 0

)
and

( 0 0 0
0 0 0
1 0 0

)
, respectively.

In mathematics, n-forms can be regarded as a function that takes n tangent
vectors and returns a value. This return value is the result of multiplying the
tensor that represents the differential form and the tangent vectors. Especially,
the result of applying the tangent vector v to the one-form ω is inner product:

ω(v) = ⌊ω⌋ivi

where ⌊ω⌋ is the tensor representation of ω. Generally, the result of applying
the tangent vectors v1, · · · , vn to the n-form ω is determined by the following
formula.

ω(v1, · · · , vn) =

(
1

n!

∑
σ∈Sn

sgn(σ)⌊ω⌋iσ1 ···iσn

)
(v1)

i1 · · · (vn)in

We call 1
n!

∑
σ∈Sn

sgn(σ)⌊ω⌋iσ1 ···iσn the normal representation of the differential form

ω. We use the antisymmetrize function for calculating the normal representation of
differential forms. For example, the normal representation of dx∧dy is calculated
as follows.

antisymmetrize [| [| 0, 1, 0 |], [| 0, 0, 0 |], [| 0, 0, 0 |] |]

-- [| [| 0, 1 / 2, 0 |], [| -1 / 2, 0, 0 |], [| 0, 0, 0 |] |]

5.4.2 Index Completion Rules

We distinguish differential forms from the other tensors in programs by omit-
ting indices. In mathematics, we denote a p-form by appending only (n − p)
indices to an n-th order tensor. For example, the third order tensor ωi

j denotes a
matrix-valued one-form. We can use this notation for representing tensor-valued
differential forms in programs.

This section shows the design of index completion rules for omitted indices
that allows us to concisely define the operators for differential forms. Let A and B

be scalar-valued 2-forms. For general scalar functions, we complement the same
indices to each argument tensor as follows.

A + B -- => A_t1_t2 + B_t1_t2

We know that the above completion is natural from the following example.

⌊dx ∧ dy + dy ∧ dz⌋t1t2 = ⌊dx ∧ dy⌋t1t2 + ⌊dy ∧ dz⌋t1t2

In most of the cases, if we complement indices as above, we can represent
the operation for differential forms. However, this completion is not suitable for
functions specially defined for differential forms such as the wedge product and
exterior derivative. In the case of the wedge product, we would like to append
the different indices to each argument as follows.
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A ∧ B -- => A_t1_t2 . B_t3_t4

For example, the following formula holds in four-dimensional Euclidean space.

⌊(dx ∧ dy) ∧ (dz ∧ dw)⌋t1t2t3t4 = ⌊dx ∧ dy⌋t1t2⌊dz ∧ dw⌋t3t4

We introduce the “!” operator for this purpose. If the “!” operator is prepended
to function application, the omitted indices are complemented by the latter
method. With this method, the function for calculating the wedge product is
defined in one line as follows.

def (∧) %A %B := A !. B

We can also define the exterior derivative in one line as follows.

def d %A := !(flip ∂/∂) coord A

The flip function swaps the arguments of a two-argument function. It is used
to transpose the result. We set the symbols for representing the coordinates to
coord. We can use the wedge product and exterior derivative defined above as
follows.

def coord := [| x, y, z |]

d x -- [| 1, 0, 0 |]

d x ∧ d y -- [| [| 0, 1, 0 |], [| 0, 0, 0 |], [| 0, 0, 0 |] |]

d z ∧ d x -- [| [| 0, 0, 0 |], [| 0, 0, 0 |], [| 1, 0, 0 |] |]

Next, we define Hodge star operator. We use the following mathematical
formula for Hodge star operator [73].

∗A =
√
det |g| · ϵi1...in ·Aj1...jk · g

i1j1 · · · gikjk · eik+1 ∧ ... ∧ ein (5.1)

We can directly translate the above formula as follows.

def hodge %A :=

let k := dfOrder A in

withSymbols [i, j]

(sqrt (abs (det g_#_#))) * (foldl (.) ((ϵ N k)_(i_1)..._(i_N) . A..._(j_1)

..._(j_k))

(map (\t -> g~(i_t)~(j_t)) [1..k]))

In the above program, the dfOrder function returns p when it obtains an p-form;
the det function returns the determinant of the argument matrix; ϵ is the Levi-
Civita symbols; “#” used in the indices as g_#_# represents a dummy symbol. All
instances of “#” are treated as different symbols. In a program that deals with
high-order tensors, the number of symbols used for indices increases. A dummy
symbol suppresses that. This mechanism makes it easier to distinguish indices,
thereby also improves the readability of the program.

5.5 Demonstration

This section shows that the proposed system is practical by showing a program
of a certain size. By modifying the programs in this section, we can use our
language for actual research. Figure 5.6b shows the mathematical formulae of
Christoffel symbols and curvature form. These formulae appear in the 4th, 5th,
and 8th programs in Figure 5.6a. We can see the sample programs that use the
functions defined above in Egison Mathematics Notebook [31].
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(a) A program for calculating Riemann curvature tensor of S2 using the formula of
curvature form

Γijk =
1

2
(
∂gij
∂xk

+
∂gik
∂xj

−
∂gkj
∂xi

) Γi
jk = gimΓmjk Ωi

j = dωi
j + ωi

k ∧ ωk
j

(b) Mathematical formulae used in the above program

Figure 5.6: Program for differential geometry in our language

5.6 Evaluation

In this section, we evaluate how simple our definitions of tensor operators are
by comparing to the other works. Table 5.1 shows the numbers of lines for
defining tensor operators in ITensor [42], Karczmarczuk’s Haskell library [53],
SageMath [15], and our work. We chose these libraries for comparison because
their definitions of tensor operators are compact compared to the other existing
work. To make the comparison fair, we do not count the number of lines for
error handling. The other approaches require additional descriptions for error
handling because they do not relax the index rules like us.

The definitions of the tensor operators by our work is shortest among the
existing work. The reason why our definitions are short is that our simplified
index rules allow us to remove the descriptions of index rules from the definitions
of tensor operators. Especially, the numbers of lines required to define tensor
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Number of lines ITensor (Julia) Karczmarczuk SageMath Egison

addition 5 n/a 27 0

multiplication 17 n/a 27 1

derivative n/a n/a n/a 0

wedge product n/a 8 9 1

exterior derivative n/a 9 8 1

hodge star n/a 8 14 5

Table 5.1: The number of lines for defining operators for tensors and differential
forms

addition and derivative operators are zero. It is achieved by defining the addition
and derivative operators as scalar functions. The definition of tensor addition by
ITensor is also short.

function (A::ITensor + B::ITensor)

C = copy(A)

C .+= B

return C

end

This is because the broadcast operation, which specifies how to map the operation
to the components of tensors, is defined in ITensor. When the dot mark is
prepended to an operator like the line 3 of the above definition, the operator
is broadcasted. In our approach, scalar functions are automatically mapped to
each tensor component without any actions by users. The language-level support
of scalar parameters allows us to define the arithmetic operators for tensor even
shorter.

The definitions of the operators for differential forms by our work is also
shortest among the existing work. This is because the reuse of our simplified
index rules releases us from describing complex algebraic rules for differential
forms. Especially, we can define the wedge product and exterior derivative in
one line. It is an important discovery that we can reuse symbolic index rules
for tensors for defining operators for differential forms. In addition, representing
differential forms using tensors enables us to define operators for differential forms
using index notation. It allows us to translate the formula of the hodge operator
directly to a program as shown in Section 5.4.2.

Finally, let us note that the derivative operator ∂/∂ for tensors is supported
only by our proposal. For this purpose we discussed to flip the superscript and
subscript in programs to allow a vector as the second argument of the derivative
operator as explained in Section 5.3.4. The derivative operator that supports
symbolic tensor indices widen the range of formulae we can describe in programs
using index notation. For example, users cannot describe a program that calculate
Riemann curvature tensors without the derivative operator using index notation
as shown in Figure 5.3c. In the existing library-based approaches, the function
for calculating Riemann curvature tensors is provided as a library function.

5.7 Conclusion

In this chapter, we showed that we can import tensor index notation into a pro-
gramming language by introducing a set of symbolic index reduction rules that
is compatible with scalar and tensor parameters. The proposed method allows
users to define functions that handle symbolic tensor indices without additional
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descriptions for handling these symbolic tensor indices. We demonstrated the
proposed method by showing our proof-of-concept programming language Egi-
son. The proposed method can be implemented also in the other programming
languages. It is an interesting research topic to think about how to incorpo-
rate the proposed method into existing programming languages. For example,
we think it is possible to introduce the concept of scalar and tensor parameters
using a static type system [68]. In a language with a static type system, whether
the parameter of a function is a scalar or tensor parameter can be specified when
specifying the type of the function.

In particular, it is of substantial significance to incorporate the proposed
method into programming languages such as Formura [64] and Diderot [55] that
have a compiler to generate code for executing tensor calculation efficiently. For
example, incorporating the proposed method into Formura would enable us to
describe physical simulation using not only the Cartesian coordinate system but
also more general coordinate systems such as the polar and spherical coordinate
systems in simple programs.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have proposed several syntax constructs and facilities of pro-
gramming languages. We have demonstrated that these syntax constructs and
facilities widen the range of algorithms that we can describe concisely. Specifi-
cally, the contributions of the thesis are as follows.

• In Chapter 2, we presented the design of our pattern-match system for
non-free data types. We proposed three criteria that must be fulfilled for
practical pattern matching for non-free data types: (1) efficiency of the
backtracking algorithm for non-linear patterns, (2) user-customizability of
pattern-match algorithm, and (3) polymorphism in patterns. We showed
how our language design naturally arises from our criteria of practical pat-
tern matching.

• In Chapter 3, we advocated a new programming paradigm called pattern-
match-oriented programming. We introduced many programming tech-
niques that replace explicit recursions with an intuitive pattern by confining
recursions inside patterns. We also proposed several non-standard pattern
constructs, such as not-patterns, loop patterns, and sequential patterns,
derived from our pattern-match facility. We classified these techniques as
pattern-match-oriented programming design patterns.

• In Chapter 4, we presented the implementation of a Haskell library that
embed our pattern-match system into Haskell. We proposed a method for
transforming Egison pattern-match expressions to an equivalent Haskell
program that uses a backtracking monad. We also designed a set of typing
rules for Egison pattern matching. We showed benchmark results that
confirm our library can be used in practical situations.

• In Chapter 5, we discussed a method for importing notations from tensor
calculus into programming languages. We proposed a set of index reduc-
tion and completion rules that allows us to define many tensor operators
without descriptions for handling symbolic tensor indices. In addition to
that, we presented a new syntax construct for declaring symmetries and
anti-symmetries of a tensor. We represented many formulae in differential
geometry by a program whose appearance is very close to the formulae.

6.2 The Three Steps for Creating New Syntax Constructs

While developing new features of programming languages, we become aware of
the following steps for creating new syntax constructs.
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Step 1. Discover a gap between our recognition and description of an algorithm.

Step 2. Design new syntax for describing algorithms in a form close to our recog-
nition.

Step 3. Design a method for executing the new syntax.

In this section, we categorize our contributions in each step. It gives us insight
for answering research questions about notations: “Is there a general way to find
a new notation?”, “Is there a formal method for measuring the superiority of
multiple notations?”

6.2.1 Step 1: Discover a Gap between Our Recognition and Descrip-
tion of an Algorithm

We have noticed the cognitive gaps four times for pattern matching.

1. When we defined the mapWithBothSides function, we noticed the importance
of pattern matching with multiple results (Section 1.2).

2. When we tried to describe pattern matching for a multiset, we noticed the
importance of non-linear patterns, user-customizability of pattern-match
algorithms, and polymorphic patterns (Section 2.2, 2.3).

3. When we defined the comb function, we got an idea of loop patterns (Sec-
tion 3.2.6).

4. When we defined the uniq function, we got an idea of sequential patterns
(Section 3.2.7).

After we noticed the importance of pattern matching with multiple results, we
consequently noticed that pattern matching with multiple results is useful for
pattern matching non-free data types. Then, we noticed the importance of non-
linear patterns, user-customizability of pattern-match algorithms, and polymor-
phic patterns. When redefining various list functions using the pattern-match
facility that satisfies all the above features, we got ideas of loop patterns and
sequential patterns.

We have noticed the gaps also 4 times for tensor calculus.

5. When we tried to define tensor multiplication that supports index notation,
we found that the definition is not easy (Section 1.3, 5.3).

6. When we tried to write down a formula that contains differential forms, we
found it difficult (Section 5.4).

7. When we tried to declare symmetries of a tensor in a program, we noticed
that we had no concise notation for this purpose (Section 5.3.7).

8. When we defined the covariant derivative operator, we noticed our descrip-
tion verbose (Section 5.3.8).

We noticed these gaps while we tried to write down formulae in a textbook of
differential geometry as many as possible. All these gaps derive from the fact
that we cannot directly write down formulae in programs.

Writing many programs for the fields in which many researchers of program-
ming languages still do not have an interest is an easy way to find the cognitive
gaps. In mathematics, there are still many calculations that we have never tried
to compute using computers.
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6.2.2 Step 2: Design New Syntax for Describing Algorithms in a
Form Close to Our Recognition

We have designed several new syntax constructs for pattern matching.

1. We designed the matchAll expression that collects all the pattern-match
results. It enables users to handle multiple pattern-match results (Sec-
tion 2.3.1).

2. We designed the value pattern to represent non-linear patterns (Section 2.3.2).

3. We designed the pattern-match expressions to take an additional argument
matcher. This additional argument is necessary for polymorphic patterns
(Section 2.3.3).

4. We designed the matcher expression that enables users to customize a pattern-
match algorithm (Section 2.5).

5. We designed the loop pattern and sequential pattern (Section 3.2.6, 3.2.7).

Most of the above syntax arose naturally from the reasons for the gaps that
we analyzed when we noticed the gaps. The patter-match expressions matchAll

and match are designed by extending the existing pattern-match expressions for
algebraic data types. On the other hand, we made much effort to design syntax
for defining matchers. This is because the semantics of pattern-match expressions
are strongly connected to the syntax for defining matchers.

We have designed several new syntax constructs for tensor calculus.

6. We designed how to describe formulae that uses tensor index notation (Sec-
tion 5.3.8).

7. We designed syntax for declaring tensor symmetries (Section 5.3.7).

For designing how to describe index notation in programming, we have not made
much effort because we can just import notations from mathematics. On the
other hand, it took a lot of time to get an idea for declaring tensor symmetries.
As mentioned in Section 5.3.7, we got an idea of the syntax from the mathematical
notation for commutators T[ij] = Tij − Tji.

When we designed the syntax for declaring tensor symmetries, we got the
idea that a good notation efficiently embeds algorithm information in a parse
tree. The simplest method for declaring tensor symmetries is describing a list of
symmetric indices. In contrast, the proposed notation embed this list into a tree
by assuming symmetric indices always adjoin and enclosing them by parenthesis.
We can get a new good notation by finding a special case that we can convert a
list in a parse tree that can be converted to a tree.

In fact, pattern matching is also such an example. In general, functions have
multiple arguments and multiple return values. In functional programming, we
use a list of the let expressions or do-notation that takes a list of input/output
operations to represent sequential applications of functions that have multiple
arguments and multiple return values. However, many functions that we deal
with take multiple arguments and have a single return value. Thanks to that,
we can describe sequential function applications in a tree form like f(g(x), h(y))
instead of a list of the let expressions. On the contrary, we can also describe nested
applications of the functions that take a single argument and return multiple
values in a tree form. Pattern matching is a syntax construct for representing
this kind of nested function application. For example, the pattern $x :: $y :: _
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can be regarded as a nested application of the cons function (::) that has a single
argument and two return values. Sweet Egison reverts a pattern in a tree form
to a list of input/output operations in a do-expression.

6.2.3 Step 3: Design a Method for Executing New Syntax

We have designed the executing methods for pattern matching as follows.

1. We designed an internal pattern-match algorithm of the proposed pattern-
match system as reduction of matching states (Section 2.4).

2. We developed a method for converting the proposed pattern-match expres-
sions to programs that use backtracking monads (Section 4.3).

When we designed the execution methods, we tried to make the semantics of
the language as natural as possible. We feel the semantics of a language natural
when it is general and simple.

To make the semantics of our language general we designed our pattern-match
facility for general non-free data types. We noticed the importance of user-
customizable non-linear pattern matching with multiple results when writing a
program that deals with lists and multisets. However, we do not limit our pattern-
match facility to the collection data types.

To make the semantics of our language simple we chose backtracking as the
base algorithm for pattern matching. The backtracking algorithm is the most effi-
cient and simplest for handling non-linear pattern matching with multiple results.
Not only that, the backtracking algorithm does not require users complicated de-
scriptions for defining their own patterns.

We have designed the executing methods for tensor calculus as follows.

4. We designed a set of index reduction rules that enables us to describe
function application using index notation (Section 5.3).

5. We designed an execution method of programs that declare a tensor using
index notation (Section 5.3.6).

6. We designed an execution method of programs that define a tensor operator
using index notation (Section 5.3.8).

7. We designed an execution method of programs that declare symmetries of
tensors (Section 5.3.7).

8. We designed index completion rules that enables us to describe formulae
that contain differential forms (Section 5.4).

Most of the notations for tensor calculus become executable by giving a meaning
to undefined programs. In mathematics, symbolic index rules are defined for
each tensor operator. We simplified the symbolic index rules so that we can
apply them for all the operators.

6.3 Contributions

In this thesis, we have proposed new programming facilities and styles that widen
the range of algorithms that we can describe intuitively. To this end, we found
algorithms whose description is more complicated than necessary, analyzed the
reasons, and designed new programming facilities. Utilizing these new program-
ming facilities, we wrote programs in new programming styles, found algorithms
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whose description is still complicated, and extend our new programming facilities.
We conducted such research on two independent themes, pattern matching for
non-free data types and importing notations from tensor calculus. We explained
our work for pattern matching in Chapters 2, 3, and 4, and for tensor calculus in
Chapter 5.

6.4 Future Work

This section catalogs and discuss the next goals and research questions we found
while developing our proposals.

6.4.1 Increase Application of Pattern-Match-Oriented Programming

Development of new application examples of Egison is important to convince a lot
of programmers that Egison is useful for practical use and to make them to think
about new application examples. Implementing various algorithms in Egison
helps us to clarify what pattern-match-oriented programming is and invent new
features of programming languages. We have been implementing SAT algorithms
as a representative of algorithms. We explained our implementation of the Davis-
Putnam algorithm in Section 3.4.1. We also implemented the CDCL algorithm
that has been the basis of the latest SAT algorithm. If we try to implement the
state-of-art algorithm, we want to manage memory usage and use our pattern-
match facility in system programming languages such as Rust.

Applying our pattern-match facility to query databases is another promising
application. As a first step, we are planning to implement software that translates
our pattern-match expressions to the existing query languages.

6.4.2 Implement the Proposed Pattern Matching in Other Program-
ming Languages

First, we plan to implement our pattern-match facility as a GHC plugin and GHC
extension. We have implemented our pattern-match facility as a Haskell library
in Sweet Egison introduced in Chapter 4. However, this library has limitations
due to meta-programming capability of Haskell. To begin with, quasi-quoting
each match clause is redundant. Not only that, we cannot nest pattern-match
expressions because we cannot nest quasi-quotes. We may avoid these problems
by implementing our pattern-match facility as a GHC plugin and GHC extension.
As a first step, we are surveying to confirm that we can implement our pattern-
match facility as a GHC plugin.

Second, we plan to embed Egison pattern matching into Rust, a system pro-
gramming language with strong meta-programming capability. Embedding our
pattern-match facility into a system programming language that allows manual
memory management is an interesting research topic. We found several research
questions.

• Can we implement more efficient pattern-match algorithms by manually
managing memory usage?

• How to design a pattern-match system limiting the capability of our pattern-
match facility for avoiding inefficient memory copies?
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6.4.3 Proof Writing Language

In the future, mathematical proofs will be written and checked on computers. It
is currently not common among mathematics researchers because we cannot yet
describe proofs on computers as concisely as in natural languages and formulae.
It is known as Curry-Howard correspondence; there is a strong relationship be-
tween computer programs and mathematical proofs. The syntax that is useful for
a concise description of programs is also useful for a concise description of proofs.
Pattern matching is also an important syntactic construct for intuitive descrip-
tions of proofs. A vast effort has been devoted to introducing pattern matching
to theorem proving systems [28, 43, 27]. Most modern theorem provers such as
Coq [83], Agda [82], and Lean [29] have a pattern-match facility for algebraic
data types. Applying the pattern-match facility for non-free data types proposed
in this thesis can make the descriptions of proofs more concise. With these ideas
in mind, we are designing a proof writing language with our pattern-match facil-
ity [36].

6.4.4 Pattern Matching for Wider Range of Data Types

We focused on the data abstraction for non-free data types in this thesis. How-
ever, there must be more data types waiting to be abstracted. There are still
data types we cannot apply pattern matching. For example, it is difficult to
describe intuitive patterns for multi-dimensional data, such as two-dimensional
arrays. This is because we cannot embed patterns for these data types into a
syntax tree.

6.4.5 Import More Notations from Mathematics

In this thesis, we have imported notations in tensor calculus into programming.
However, there are still many notations in mathematics that are useful but not
yet introduced into programming. Importing these notations is not only useful
but also leads us to deepen our understanding on mathematical notations.

6.4.6 Expressive Complexity

There are no established methods for comparing the readability and writability
of multiple programs written in different styles. The lack of such a method is
considered one of the reasons why the development of new notations is not very
active in programming languages. We always found difficulty in evaluating the
features of programming languages proposed in this thesis. We believe we have
provided reasonable evidence to show our proposals are useful, but these pieces of
evidence are subjective and not mathematically formal. With these ideas in mind,
we are considering a method for measuring the readability and writability of a
program. We call readability and writability of a program expressive complexity
inspired by the computational complexity of algorithms. This section introduces
the current ideas.

Let A and B be programs we want to compare. We assume that A and B
implement the same algorithm and can be compiled to the same machine code.
The reason of this assumption is that it is nonsense to compare the expressive
complexities of programs that implement different algorithms even if they have
the same input and output.

First, we investigated whether we can use the number of tokens, variables, and
local variables, or the depth of a parse tree for expressive complexity. However, we
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found it difficult because they are a constant for each program and the difference
between these constants is unconvincing to measure the readability of programs.

Currently, we are investigating conversions between A and B. In general, the
complexity of the conversion from A to B and B to A is not equal. For example,
let A be a pattern-match-oriented style program and B be a program that uses
backtracking monads. In this case, the conversion A from B is relatively easier
than B to A. One reason for this asymmetry is that we can convert all the
pattern-match expressions to programs that use backtracking monads, but the
opposite is not true. We are investigating how we can utilize this asymmetry for
calculating expressive complexity.
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