Euler's Formula
Apr 14 2016
Verify Euler's Formula Using MacLaurin Series
The following equation is known as Euler's formula.
`e^(i x) = cos(x) + i sin(x)`
We can verify that applying MacLaurin expansion to the both side of the above equation.
`cos(x) = 1 - x^2 / 2 + x^4 / 24 - x^6 / 720 + ...`
`i sin(x) = i x - (i x^3) / 6 + (i x^5) / 120 - (i x^7) / 5040 + ...`
`cos(x) + i sin(x) = 1 + i x - x^2 / 2 - (i x^3) / 6 + x^4 / 24 + (i x^5) / 120 - x^6 / 720 - (i x^7) / 5040 + ...`