
HaskellメタプログラミングによるEgisonのパターンマッチの実装

— Meta-Programming in Haskell for Non-linear Pattern
Matching with Backtracking for Non-free Data Types

Nov 9, 2019
Satoshi Egi 
Rakuten Institute of Technology  
Rakuten, Inc.

Egison — a functional language that features expressive pattern matching

!2
S. Egi and Y. Nishiwaki: “Non-linear Pattern Matching with Backtracking for Non-free
Data Types”, APLAS 2018 https://arxiv.org/pdf/1808.10603.pdf

https://arxiv.org/pdf/1808.10603.pdf

MiniEgison: a new pattern-matching library for Haskell

!3

This presentation introduces the implementation of miniEgison, a
Haskell library that provides the pattern-matching facility of Egison,
which is compilable and type-inferable by GHC.

Haskell program that enumerates twin primes by pattern matching.

MiniEgison: a new pattern-matching library for Haskell

!4

MiniEgison is implemented utilizing the following Haskell features
(GHC extensions):

• Template Haskell;
• generalized algebraic data types;
• existential types;
• datatype promotion;
• multi-parameter type classes.

This presentation shows how these Haskell
features are utilized for implementing miniEgison.

Today’s Contents

!5

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Today’s Contents

!6

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Tutorial: the matchAll expression

!7

Tutorial: the matchAll expression

!8

Target

Pattern Body

Tutorial: the matchAll expression

!9

What is matcher?What is MatchAll?

This expression has two characteristic parts.

Tutorial: the matchAll expression

!10

What is matcher?What is MatchAll?

MatchAll returns a list of all pattern-matching
results.

Tutorial: the matchAll expression

!11

What is matcher?What is MatchAll?

Matcher specifies the pattern matching method.

Tutorial: ad-hoc polymorphism of patterns

!12

Pattern-matching result depends on matchers.

The pattern-matching algorithms for List and
Multiset are user-defined.

Tutorial: non-linear pattern matching

!13

• (Mini)Egison can handle non-linear patterns.
• Non-linear patterns allow to refer to the value bound to the

pattern variables appear in the left-side of the pattern.
• # is used to denote the value pattern.
• The expression that follows after # is evaluated and equality

against the target is checked.

Tutorial: non-linear pattern matching with backtracking

!14

• (Mini)Egison uses backtracking for traversing the
search trees.

• Therefore, no unnecessary enumerations occur like
(naively implemented) pattern guards.

Tutorial: infinitely many pattern-matching results

!15

Tutorial: the match expression

!16

Tutorial: the match expression

!17

Tutorial: list functions in pattern-matching-oriented programming

!18

Tutorial: list functions in pattern-matching-oriented programming

!19

•join splits a list into two lists.
•$x is matched to each element of the list.

Tutorial: list functions in pattern-matching-oriented programming

!20

• A nested join-cons pattern is used for
describing concat.

Tutorial: list functions in pattern-matching-oriented programming

!21

• The not-pattern is used for
describing a pattern for unique.

• This not-pattern describes that
the element x does not appear
again.

Tutorial: list functions in pattern-matching-oriented programming

!22

• Pattern-matching against a tuple is often used for comparing two data.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!23

Tutorial: SAT solver (Davis-Putnam Algorithm)

!24

• dp takes a list of propositional variables
and a logical formula in CNF.

• Propositional variables and literals are
represented using integers.

• e.g. P -> 1, Q -> 2, ¬P -> -1.
• CNF is represented as a multiset of

multisets of literals.
• e.g. (P ∨ Q) ∧ (¬Q ∨ R) ∧ (¬P ∨ ¬R) ->

{{1,2},{-2,3},{-1,-3}}

• dp returns True when the given formula is satisfiable, otherwise
returns False.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!25

• vars and cnf are pattern-matched as a
multiset of integers and a multiset of
multisets of integers, respectively.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!26

• If cnf is empty, cnf is satisfiable.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!27

• If cnf contains an empty clause,
cnf is unsatisfiable.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!28

• If cnf contains a clause that consists
of a single literal x, we can assign x
true at once.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!29

• If a propositional variable v appears
only positively in cnf, we can assign
v true at once.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!30

• If a propositional variable v appears
only negatively in cnf, we can assign
v false at once.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!31

• Otherwise, we apply the resolution
principle.

Tutorial: SAT solver (Davis-Putnam Algorithm)

!32

• Egison pattern matching dramatically
improves the readability of programs.

Tutorial: the essence of pattern-matching-oriented programming

!33

There are two kinds of loops in programming:

Loops that narrow the
search space

Loops that can be
described by simple

backtracking

Functional programming
mixes these loops together
in a program.

Tutorial: the essence of pattern-matching-oriented programming

!34

Loops that narrow the
search space

Loops that can be
described by simple

backtracking
Egison pattern

matching

Loops that narrow the
search space

Functional programming
mixes these loops together
in a program.

Pattern-matching-oriented
programming confines the later kind of
loops in patterns.

=

There are two kinds of loops in programming:

Tutorial: SAT solver (Davis-Putnam Algorithm)

!35

• Pattern-matching-oriented
programming allows us to concentrate
on describing the essential parts
(loops) of algorithms.

Today’s Contents

!36

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Today’s Contents

!37

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Scheme macros for Egison pattern matching

!38

Compilation of Egison Pattern Matching to dynamically typed
programming languages (e.g., Scheme and Lisp) has been already
proposed.
The remaining problem is compilation for statically typed
languages (e.g., Haskell).
S. Egi: “Scheme Macros for Non-linear Pattern Matching with Backtracking for Non-free Data
Types”, Scheme Workshop 2019

MiniEgison takes a similar approach with the Scheme macros.

Today’s Contents

!39

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Typing rules for matchAll and patterns

!40
Unpublished work by Kawata and Egi designed a type system for Egison.

Typing rules for matchAll

!41

Typing rules for matchAll

!42

• Matcher and Pattern are built-in type operators:
• Matcher T is a type for matchers for T;
• Pattern T is a type for patterns for T.

Typing rules for matchAll

!43

• Matcher and Pattern are built-in type operators:
• Matcher T is a type for matchers for T;
• Pattern T is a type for patterns for T.

• matchAll takes a matcher and a pattern for the
same type with the target.

Typing rules for matchAll

!44

• Patterns have the special judgement operator for
handling non-linear patterns.

• ε and Δ denotes the a type environment for patterns.
• ε denotes an empty type environment.
• ε is an input type environment.
• Δ is an output type environment.

Typing rules for matchAll

!45

• Patterns have the special judgement operator for
handling non-linear patterns.

• ε and Δ denotes the a type environment for patterns.
• ε denotes an empty type environment.
• ε is an input type environment.
• Δ is an output type environment.

• Δ is used for evaluating the body of the match clause.

Typing rules for patterns

!46

Typing rules for patterns

!47

• Wildcards and value patterns make no new bindings.

Typing rules for patterns

!48

• A pattern variable adds a new binding to the type environment.
• If $x is the Pattern T, then x has the type T.

Typing rules for patterns

!49

• A constructor pattern passes the type environment from left to
right to handle non-linear patterns.

Typing rules for matchAll and patterns

!50

Translating Egison pattern matching expressions to a Haskell program
on which the Haskell type system does type-checking equivalent to the

above typing rules is challenging!

Today’s Contents

!51

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Today’s Contents

!52

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Typing the matchAll expression

!53

Typing the matchAll expression

!54

• MatchAll takes a target, a matcher, and match clauses
and returns the results.

• a: the type of the target.
• m: the type of the matcher.
• b: the type of the body of match

clause.

Typing the matchAll expression — matchers

!55

• Matcher is a type class with no methods.

• The name of the type and data constructor of Eql are identical.
• This instance declaration asserts that Eql is a matcher for a

that is an instance of Eq.

Typing the matchAll expression — matchers

!56

• Matcher is a type class with no methods.

• The name of the type and data constructor of Eql are identical.
• This instance declaration asserts that Eql is a matcher for a

that is an instance of Eq.

• A multiple type class is effectively used
to describe the relation between a
matcher and a type of target data.

Typing the matchAll expression — match clauses

!57

Typing the matchAll expression — match clauses

!58

• vs is the type of the pattern-matching results.

• vs is a list of types (a type-level list).

Typing the matchAll expression — match clauses

!59

• The type vs is existentially quantified.

• This is because each pattern of the match clauses in the same
pattern-matching expression generally makes different bindings.

Typing the matchAll expression — match clauses

!60

• The type vs is existentially quantified.

• This is because each pattern of the match clauses in the same
pattern-matching expression generally makes different bindings.

• Existential types are effectively used to
hide vs from the type of MatchClause.

Typing the matchAll expression — match clauses

!61

• mc is a quasi-quoter of Template Haskell for
describing match clause concisely.

Typing the matchAll expression — match clauses

!62

• mc is a quasi-quoter of Template Haskell for
describing match clause concisely.

• The body of match clause is transformed to a
function that takes a heterogeneous list.

Typing the matchAll expression — match clauses

!63

• mc is a quasi-quoter of Template Haskell for
describing match clause concisely.

• The body of match clause is transformed to a
function that takes a heterogeneous list.

• Template Haskell is effectively used for
concise notation of match clauses.

Typing the matchAll expression — patterns

!64

• ctx: the type of the intermediate pattern-
matching result (the values bound to the
pattern variables in the left-side of the
pattern).

• vs: the type of the values bound to the
pattern variables appear in this pattern.

Typing the matchAll expression — patterns

!65

• Datatype promotion (DataKinds extension)
is effectively used to represent the type of
pattern-matching results.

• ‘[] represent a type of the empty list.
• ‘[a] represent a type of the list that

contains single element a.

• GADTs allow vs (the 4th parameter of Pattern)
changes for each data constructor (vs of
Wildcard is ‘[], vs of PatVar is ‘[a]).

Today’s Contents

!66

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Overview of the pattern-matching algorithm inside miniEgison

!67

Intermediate pattern-matching result

Stack of matching atoms

Pattern matching algorithm is defined as
reduction of matching states.

Overview of the pattern-matching algorithm inside miniEgison

!68

Pattern Matcher Target

A matching atom consists of a pattern, matcher, and target.

Overview of the pattern-matching algorithm inside miniEgison

!69

1

2

3

Next matching states are generated from the
definition of cons in the multiset matcher.

Overview of the pattern-matching algorithm inside miniEgison

!70

1

2

3

We examine only the reduction of this matching state.

Next matching states are generated from the
definition of cons in the multiset matcher.

Overview of the pattern-matching algorithm inside miniEgison

!71

1

2

The target 2 is added to the intermediate pattern-matching
result because the pattern is a pattern variable.

Next matching states are generated from the definition of
cons in the multiset matcher.

This matching state fails to
pattern-match and vanishes.

Overview of the pattern-matching algorithm inside miniEgison

!72

1

2

The target 2 is added to the intermediate pattern-matching
result because the pattern is a pattern variable.

Next matching states are generated from the definition of
cons in the multiset matcher.

We examine the reduction of this
matching state.

Overview of the pattern-matching algorithm inside miniEgison

!73

The value pattern matches with the target and the
matching atom is popped off.

The wildcard matches with any target.

If the stack of matching atoms becomes
empty, pattern matching succeeds.

Typing matching atoms and matching states

!74

Typing matching atoms and matching states

!75

• A matching atom is a triple of a pattern,
a matcher, and a target.

Typing matching atoms and matching states

!76

• a and m are existentially quantified.
• The reason is because the types of the

targets of the matching atoms in a stack
of matching atoms are generally
different.

Typing matching atoms and matching states

!77

• a and m are existentially quantified.
• The reason is because the types of the

targets of the matching atoms in a stack
of matching atoms are generally
different.

• Existential types are effectively used to
hide a and m from the type of MAtom.

Typing matching atoms and matching states

!78

• MList is a datatype for a stack of
matching atoms.

• ctx: the type of intermediate pattern-
matching results.

• vs: the type of the values bound by
processing this MList itself.

Typing matching atoms and matching states

!79

• MList is a datatype for a stack of
matching atoms.

• ctx: the type of intermediate pattern-
matching results.

• vs: the type of the values bound by
processing this MList itself.

Typing matching atoms and matching states

!80

• MList is a datatype for a stack of
matching atoms.

• ctx: the type of intermediate pattern-
matching results.

• vs: the type of the values bound by
processing this MList itself.

• vs of MNil is an empty list.

Typing matching atoms and matching states

!81

Typing matching atoms and matching states

!82

• The pattern-matching result of the first
matching atom is appended to the
intermediate result of the rest matching
atoms.

• :++: is a type operator for the type-level
append operation.

Typing matching atoms and matching states

!83

• The concatenation of the pattern-matching
result (xs) of the first matching atom and
the rest matching atoms (ys) are the result
of the whole stack of matching atoms.

Typing matching atoms and matching states

!84

• Datatype promotion (DataKinds extension)
is effectively used here.

• ‘[] represent a type of the empty list.
• :++: is defined using TypeFamily.

Typing matching atoms and matching states

!85

• GADTs allow vs (the 2nd parameter of MList)
changes for each data constructor (vs of MNil
is ‘[], vs of MCons is xs :++: ys).

Typing matching atoms and matching states

!86

• vs is a type of the final pattern-matching
result.

Typing matching atoms and matching states

!87

• MState takes an intermediate pattern-
matching results (HList xs) and a stack
of matching atoms (MList xs ys).

• xs :++: ys is the final pattern-matching
results:

matchAllDFS

!88

matchAllDFS

!89

• The initial matching state is created.

matchAllDFS

!90

• Each pattern-matching result is mapped to the body of match clause.

matchAllDFS — processMStatesAllDFS

!91

• The main loop is tail-recursive.
• It is important for execution performance.

matchAllDFS — processMState

!92

Today’s Contents

!93

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

UnorderedPair

!94

UnorderedPair

!95

• The pattern for 2-tuples for which we ignore
the order of elements.

UnorderedPair

!96

• upair is a function that takes patterns and
return a pattern.

UnorderedPair

!97

• Let’s look into the definition of upair.

UnorderedPair

!98

• The Pattern data constructor is used to define
a user-defined patterns.

UnorderedPair

!99

• Pattern takes a function that take
• a intermediate pattern-matching result,
• a matcher, and
• a target,

• and returns
• a list of lists of matching atoms.

UnorderedPair

!100

• Pattern takes a function that take
• a intermediate pattern-matching result,
• a matcher, and
• a target,

• and returns
• a list of lists of matching atoms.

• twoMAtoms is a utility function to create an
MList that consists of two matching atoms.

List and Multiset

!101

List and Multiset

!102

• CollectionPat is a type class for changing
the meaning of nil and cons for each
matcher.

Value Patterns

!103

• The pattern constructor of the value patterns are
defined as a method of type class.

• This is because ad-hoc polymorphism is important for
value patterns.

Value Patterns

!104

• valuePat takes a function that takes an intermediate
pattern-matching result.

Value Patterns

!105

• A value pattern is rewritten to the function that takes
an intermediate pattern-matching result.

Value Patterns

!106

Value Patterns

!107

Today’s Contents

!108

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

Experiment the overhead of miniEgison

!109

Functional style

Pattern-matching-oriented style

Benchmark results

!110

• The overhead of miniEgison is not so large
(only 2-4 times in this case).

Today’s Contents

!111

• Tutorial of MiniEgison
• Background

• Compilation of Egison Pattern Matching
• Type System for Egison Pattern Matching

• Implementation of MiniEgison
• Typing MatchAll
• Typing Matching States and Matching Atoms
• User-Defined Pattern-Matching Algorithms

• Performance
• Conclusion

MiniEgison: a new pattern-matching library for Haskell

!112

This presentation showed how miniEgison is implemented utilizing
the following Haskell features (GHC extensions):

• Template Haskell is used to transform match clauses;
• generalized algebraic data types are used to define patterns;
• existential types are used to define match clauses and matching

atoms;
• datatype promotion is used to represent intermediate pattern-

matching results;
• multi-parameter type classes are used to type matchers.

Future work

!113

• Implement miniEgison as a GHC extension.
• Implement Egison pattern matching on theorem provers.

Future work

!114

• Implement miniEgison as a GHC extension.
• Implement Egison pattern matching on theorem provers.

Proofs of fundamental theorem of arithmetic in Lean and Lean + Egison.

!115

• Pattern matching for non-free data types (e.g., multisets) will make
descriptions of proofs concise.

Acknowledgments

!116

• I thank Mayuko Kori for her help for implementing miniEgison.
• I thank Akira Kawata for implementing a proof-of-concept type system of
Egison in Typed Egison.

• I thank Yuichi Nishiwaki and Matthew Roberts for constructive discussion
while implementing miniEgison.

