
The Egison Programming Language

Vol.01　Mar/28/2014
Satoshi Egi
Rakuten Institute of Technology
http://rit.rakuten.co.jp/

2

Profile of Egison	

Paradigm	
 Pattern-matching-oriented,
Pure functional	

Author	
 Satoshi Egi	

License	
 MIT	

Version	
 3.3.4 (2014/03/28)	

First Released	
 2011/5/24	

Filename Extension	
 .egi	

Implemented in	
 Haskell (about 3,400 lines)	

Egison is the programming language I’ve created.

3

Motivation

I’d like to create a programming language that
directly represents human’s intuition.

Function modularity

Type system Pattern matching

Egison (current)
Egison next version

Function modularity

Type system Pattern matching

Lisp (before Scheme)
Scheme
ML, OCaml, Haskell

4

Egison in one minute

Egison is the world's first programming language
that realized non-linear pattern-matching with
backtracking.

(match-all xs (multiset integer) !
 [<cons $x <cons ,x _>> x]) !
Egison

Enumerate the elements of
the collection ‘xs’ that appear

more than twice

pairs = [] !
(1..n).each do |i| !
 (i..n).each do |j| !
 if xs[i] == xs[j] !
 pair = xs[i] !
 end !
 end !
end !
Ruby

5

Quick Tour

6

The ‘match-all’ expression

Target Matcher

Pattern Expression executed
when pattern matching

succeed

Result

Meaning: Pattern match against the “target” as
the “matcher” with the “pattern” and return all
results of pattern matching.

7

The ‘match-all’ expression

Target

Pattern-match against the target data {1 1 2 3 2}

8

The ‘match-all’ expression

Matcher Target

Pattern-match against the target data {1 1 2 3 2}
as the multiset of integers

9

The ‘match-all’ expression

Target Matcher

Pattern

Pattern-match against the target data {1 1 2 3 2}
as the multiset of integers with the pattern
<cons $x <cons ,x _>>

10

The ‘match-all’ expression

Target Matcher

Pattern Expression executed
when pattern matching

succeed

Pattern-match against the target data {1 1 2 3 2}
as the multiset of integers with the pattern
<cons $x <cons ,x _>> and return the value
bound to x.

11

The ‘match-all’ expression

Target Matcher

Pattern Expression executed
when pattern matching

succeed

Result

Pattern-match against the target data {1 1 2 3 2}
as the multiset of integers with the pattern
<cons $x <cons ,x _>> and return the value
bound to x.

12

The ‘cons’ pattern constructor

Divide a collection into an element and a
collection of rest of elements.

13

The ‘cons’ pattern constructor

The meaning of ‘cons’ changes for each matcher

Divide a collection into an element and a
collection of rest of elements.

14

The nested ‘cons’ pattern constructor

Extracting two elements using the ‘cons’ patterns.

15

Non-linear patterns

Elements that appear twice

Two same head elements

We can deal with the multiple occurrences of the
same variables in a pattern.

16

Not-patterns

One more ‘x’

No more ‘x’

Patterns that match if the pattern does not match.

17

The ‘join’ pattern constructor

Divide a collection into two collections.

18

Playing with the ‘join’ pattern constructor

Enumerate all two combination of elements.

19

Demonstrations

20

The first application of Egison	

21

The first application of Egison	

Match as a set of cards

22

The first application of Egison	

Pattern for straight flash

23

The pattern for straight flush

24

The pattern for straight flush

Same suit with $s

25

The pattern for straight flush

Same suit with $s

 Numbers are serial from $n

26

The pattern for straight flush

Same suit with $s

 Numbers are serial from $n

We can write any expression after ‘,’

27

The first application of Egison	

Pattern for two pair

28

The pattern for two pair

29

The pattern for two pair

Matches with any suit

Matches with any card

30

The pattern for two pair

Matches with any suit

Matches with any card

Same number with $m

Same number with $n

31

The pattern for two pair

Matches with any suit

Matches with any card

Same number with $m

Same number with $n

Non-linear patterns have very strong power

32

The first application of Egison	

Non-linear patterns enables to
represent all hands in a single pattern

33

The first application of Egison	

Egisonists can write this
code in 2 minutes!

Non-linear patterns enables to
represent all hands in a single pattern

34

Java version

public static boolean hasPair(Card[] cards) { !
 for (int i = 0; i <= 4 ;i++) { !
 for (int j = i + 1 ; j <= 4 ; j++) { !
 if (cards[i] == (cards[j])) { !
 return true; !
 } !
 return false; !
 } !
 } !
} !

Just finding a pair of cards is already complex.

I found a poker-hand evaluator in Java more than
200 lines of code.

http://www.codeproject.com/Articles/38821/Make-a-poker-hand-evalutator-in-Java

35

More complex example, Mahjong

36

More complex example, Mahjong

Two same tiles

Three consecutive tiles

Three same tiles

37

More complex example, Mahjong

Two same tiles

Three consecutive tiles

Three same tiles

Seven twins or one twin + four shuntsu or kohtsu

38

More complex example, Mahjong

Two same tiles

Three consecutive tiles

Three same tiles

Seven twins or one twin + four shuntsu or kohtsu

Pattern modularization makes
programming more simple!

39

One More Exciting Demonstration

40

Collections

41

Infinite collections

42

Beautiful example on elementary mathematics

Pattern matching against an infinite collection

43

This sample is on the homepage of Egison

44

Egison design policy

Beautiful and Elegant
-> Simple

45

Visions

46

What we will be able to do with Egison	

•  Access data in new elegant ways
•  The most elegant query language
•  Able to access lists, sets, graphs, trees or any

other data in a unified way
•  Analyze data in new elegant ways

•  Provide a way to access various algorithm and
data structures in a unified way

•  Implement new interesting applications
e.g.
•  Natural language processing, New programming

languages, Mathematical expression handling,
Image processing

47

What we will be able to do with Egison	

•  Access data in new elegant ways
•  The most elegant query language
•  Able to access lists, sets, graphs, trees or any

other data in a unified way
•  Analyze data in new elegant ways

•  Provide a way to access various algorithm and
data structures in a unified way

•  Implement new interesting applications
e.g.
•  Natural language processing, New programming

languages, Mathematical expression handling,
Image processing

Stage1

Stage2

48

What we will be able to do with Egison	

•  Access data in new elegant ways
•  The most elegant query language
•  Able to access lists, sets, graphs, trees or any

other data in a unified way
•  Analyze data in new elegant ways

•  Provide a way to access various algorithm and
data structures in a unified way

•  Implement new interesting applications
e.g.
•  Natural language processing, New programming

languages, Mathematical expression handling,
Image processing

Stage1

Stage2

49

Query example	

•  Query that returns twitter users who are
followed by “__Egi” but not follow back
“__Egi”.

id integer
name string

User:

from_id integer
to_id Integer

Follow:

50

SQL version	

•  Complex and difficult to understand
•  Complex where clause contains “NOT EXIST”
•  Subquery

51

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

52

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

53

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”

54

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”
2. Followed by ‘uid’

55

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”
2. Followed by ‘uid’
3. But not follow back not

56

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”
2. Followed by ‘uid’
3. But not follow back not
4. Get name of ‘fid’

57

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”
2. Followed by ‘uid’
3. But not follow back not
4. Get name of ‘fid’
Return the results

58

Egison version	

•  Very Simple
•  No where clauses
•  No subquery

Joining 4 tables

1. Get id of “__Egi”
2. Followed by ‘uid’
3. But not follow back not
4. Get name of ‘fid’
Return the results

We can run this query against
data in SQLite!

59

GUI frontend	

•  We’ll provide GUI for intuitive data access
•  Data access for even non-engineers
•  Engineers can concentrate on data analysis

Very Easy!

60

What we will be able to do with Egison	

•  Access data in new elegant ways
•  The most elegant query language
•  Able to access lists, sets, graphs, trees or any

other data in a unified way
•  Analyze data in new elegant ways

•  Provide a way to access various algorithm and
data structures in a unified way

•  Implement new interesting applications
e.g.
•  Natural language processing, New programming

languages, Mathematical expression handling,
Image processing

Stage1

Stage2

61

Database in the next age

In future, databases will be
embedded in programming
languages and hidden.

We will be able to handle
databases directly and
easily as arrays and
hashes in existing
languages.

The pattern-matching of Egison will play a
necessary role for this future.

62

The other funny plans	

•  Access data in new elegant ways
•  The most elegant query language
•  Able to access lists, sets, graphs, trees or any

other data in a unified way
•  Analyze data in new elegant ways

•  Provide a way to access various algorithm and
data structures in a unified way

•  Implement new interesting applications
e.g.
•  Natural language processing, New programming

languages, Mathematical expression handling,
Image processing

Stage1

Stage2

63

Egison has wide range of applications

•  Data mining
•  Work as the most elegant query language

•  Natural Language Processing
•  Enable to handle complex syntax structures

intuitively as humans do in their mind
•  New Programming Languages
•  Mathematical expression handling

•  Enable to handle complex structures easily
•  Enable to handle various mathematical notion

directly

Egison is an inevitable and necessary
innovation in the history of computer science

64

The Current Situation

65

Egison website	

66

Online demonstrations	

67

Installer of Egison and ‘egison-tutorial’	

•  Egison can be installed on Mac, Windows and Linux.
•  We’ve prepared a package for Mac
•  Download it from http://www.egison.org

Install me Egison
and please try

‘egison-tutorial’!

Get following commands!
•  egison
•  egison-tutorial

68

‘egison-tutorial’

You’ll get Egison
easily!

69

‘egison-tutorial’

We can try it
online, too!

70

Next Plans

71

Egison as the programming language

Function modularity

Type system Pattern matching

Egison (current)
Egison next version

Function modularity

Type system Pattern matching

Lisp (before Scheme)
Scheme
ML, OCaml, Haskell

Make Egison the perfect programming language.

72

Extending other languages

•  Ruby https://github.com/egison/egison-ruby

•  Python (planning)
•  Haskell (planning)

73

Poker hands in Ruby

74

Database support

I appreciate your request for support !

We will extend support for high speed data
storages as the backend of Egison.

75

Thank you!

Please visit our website!
http://www.egison.org

Follow us in Twitter @Egison_Lang

Let’s talk and collaborate with us!
satoshi.egi@mail.rakuten.com

